DOI QR코드

DOI QR Code

Treatment of Waste Air Containing Malodor and VOC: 2. Effect of Light-intensity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air

악취 및 VOC를 함유한 폐가스의 광촉매 처리: 2. 광도의 폐가스 처리효율에 대한 영향

  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • Received : 2012.10.16
  • Accepted : 2012.11.19
  • Published : 2012.12.01

Abstract

The photocatalytic reactor was designed to have improved efficiency by enhancing a light intensity of photocatalytic reactor using a reflector coated on the surface at the outer radius of annular shaped photocatalytic reactor. The improved photocatalytic reactor performed to treat waste air containing malodor and VOC with the enhanced light intensity, of which the effect on their removal efficiency was investigated. The intensities of illumination of the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst were observed to increase by 28.5% and 30.1%, respectively, compared to those of photocatalytic reactor without any reflector. Using the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst, the removal efficiencies were enhanced by 2~3% and insignificantly, respectively. The removal efficiencies of the optimized photocatalytic reactor with reflectors, filled with porous silica-based media carrying photocatalyst, were observed to increase by 26% and 60%, compared to those of photocatalytic reactor (i.e., 19% and 53%), without any reflector, filled with nonporous glass bead media carrying photocatalyst, for hydrogen sulfide and toluene, respectively. The roughness of used reflector surface was measured to be ca. four times as big as that of a commercial mirror. However, their removal efficiencies are expected to be enhanced by increasing an light intensity resulting from lowering the roughness of used reflector coated on the improved photocatalytic reactor in the future.

환형 광촉매반응기 외경지지체의 반사막에 의한 광촉매반응기시스템의 광도를 제고함으로써 개선된 광촉매반응기에 의한 악취성분 및 휘발성 유기화합물을 동시 포함한 폐가스의 처리를 수행하였다. 그리고 광도 제고가 각 운전조건에서의 폐가스처리효율에 미치는 영향을 조사하였다. 광촉매 코팅된 nonporous glass bead 담체와 porous silica-based 담체를 각각 광촉매반응기에 충전하였을 때에 반사필름이 부착된 개선된 광촉매반응기 외경에서 측정한 광도는, 반사필름이 부착되지 않아서 광도가 제고되지 않은 광촉매반응기보다 각각 30.1%와 28.5% 증가하였다. Porous silica-based 담체를 충전한 개선된 광촉매반응기의 제거효율에 대한 제고효과는 약 2~3%이었다. 그러나 glass-bead 담체를 충전했을 때에 개선된 광촉매반응기의 제거효율 제고효과는 미미하였다. Porous silica-based 담체가 충전된 개선된 광촉매반응기인 최적화 광촉매반응기의 경우의 황화수소 및 톨루엔 제거효율은 nonporous glass bead가 충전되고 반사막이 없는 광촉매반응기 경우의 제거효율인 각각 19%와 53%보다 각각 약 26%와 약 60%의 증가율을 보였다. 반사막 필름표면의 roughness가 종래의 상업용 거울의 roughness보다 4배 정도 컸으나, 향후 개선된 광촉매반응기의 반사막의 roughness를 개선할 경우에 광도 개선효과가 더욱 커져서 이에 따른 악취 및 VOC를 함유한 광촉매 처리효율이 더욱 제고되리라 예상된다.

Keywords

References

  1. Tada, H., Akazawa, M., Kubo, Y. and Ito, S., "Enhancing Effect of SiOx Monolayer Coverage of $TiO_{2}$ on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media," J. Phys. Chem. B, 102, 6360-6366(1998). https://doi.org/10.1021/jp980892d
  2. Tada, H., Kubo, Y., Akazawa, M. and Ito, S., "Promoting Effect of SiOx Monolayer Coverage of $TiO_{2}$ on the Photoinduced Oxidation of Cationic Surfactants," Langmuir, 14, 2936-2939(1998). https://doi.org/10.1021/la971015m
  3. Jung, K. Y. and Park, S. B., "Effect of Calcination Temperature and Addition of Silica, Zirconia, Alumina on the Photocatalytic Activity of Titania," Korean J. Chem. Eng., 18, 879-888(2001). https://doi.org/10.1007/BF02705612
  4. Vohra, M. S. and Tanaka, K., "Photocatalytic Degradation of Aqueous Pollutants Using Silica-modified $TiO_{2}$," Water Res., 37, 3992-3996(2003). https://doi.org/10.1016/S0043-1354(03)00333-6
  5. Nakano, K., Obuchi, E., Takagi, S., Yamamoto, R., Tanizaki, T., Taketomi, M., Ichida, K., Suzuki, M. and Hashimoto, A., "Photocatalytic Treatment of Water Containing Dinitrophenol and City Water over $TiO_{2}/SiO_{2}$," Sep. Purif. Technol., 34, 67-72(2004). https://doi.org/10.1016/S1383-5866(03)00176-X
  6. Ismail, A. A., Ibrahim, I. A., Ahmed, M. S., Mohamed, M. R. and El-Shall H., "Sol-gel Synthesis of Titania-silica Photocatalyst for Cyanide Photodegradation," J. Photochem. Photobiol. A-Chem., 163, 445-451(2004). https://doi.org/10.1016/j.jphotochem.2004.01.017
  7. Zou, L., Luo, Y., Hopper, M. and Hu, E., "Removal of VOCs by Photocatalysis Process Using Adsorption Enhanced $TiO_{2}-SiO_{2}$ Catalyst," Chem. Eng. Process., 45, 959-964 (2006). https://doi.org/10.1016/j.cep.2006.01.014
  8. Wang, Y. M., Liu, S. W., Xiu, Z., Jiao, X. B., Cui, X. P. and Pan, J., "Preparation and Photocatalytic Properties of Silica Gel-sup- Ported $TiO_{2}$," Material Letters, 60, 974-978(2006). https://doi.org/10.1016/j.matlet.2005.10.061
  9. Tanaka, K., Fukuyoshi, J., Segawa, H. and Yoshida, K., "Improved Photocatalytic Activity of Zeolite- and Silica-incorporated $TiO_{2}$ Film," J. Hazard. Mater., B137, 947-951(2006).
  10. Marugan, J., Hufschmidt, D., Lopez-Munez, M., Seltzer, V. and Bahnemann, D., "Photonic Efficiency for Methanol Photooxidation and Hydroxyl Radical Generation on Silica-supported $Tio_{2}$ Photocatalysts," Appl. Catal. B: Environ., 62, 201-207(2006). https://doi.org/10.1016/j.apcatb.2005.07.013
  11. Subramanian, M. and Kannan, A., "Photocatalytic Degradation of Phenol in a Rotating Annular Reactor," Chem. Eng. Sci., 65, 2727-2740(2010). https://doi.org/10.1016/j.ces.2010.01.004
  12. Okamoto, K., Yamamoto, Y. and Tanaka, H., "Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase $TiO_{2}$ Power," Bull Chem. Soc. Jpn., 58, 2023-2027(1985). https://doi.org/10.1246/bcsj.58.2023
  13. D'oliveira, J. C., Ghassan, A. S. and Pichat, P., "Photodegradation of 2- and 3-chlorophenol in $TiO_{2}$ Aqueous Suspensions," Environ Sci. Technol., 24, 990-996(1990). https://doi.org/10.1021/es00077a007
  14. Ollis, D. F., Pelizzetti, E. and Serpone, N., "Photocatalyzed Destruction of Water Contaminants," Environ Sci. Technol., 25, 1522-1528 (1991). https://doi.org/10.1021/es00021a001
  15. Yang, L. and Liu, Z., "Study on Light Intensity in the Process of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy," Energy Conv. Manag., 48, 882-889(2007). https://doi.org/10.1016/j.enconman.2006.08.023
  16. Lim, K. H., Park, S. W., Lee, E. J. and Hong, S. H., "Treatment of Mixed Solvent Vapors with Hybrid System Composed of Biofilter and Photo-catalytic Reactor," Korean J. Chem. Eng., 22(1), 70-79(2005). https://doi.org/10.1007/BF02701465
  17. Lee, E. J. and Lim, K. H., "Treatment of Malodorous Waste Air Using Hybrid System," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(3), 382-390(2010).

Cited by

  1. 광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리 vol.51, pp.1, 2012, https://doi.org/10.9713/kcer.2013.51.1.80