DOI QR코드

DOI QR Code

Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration

탈미네랄 골분이 비율별로 포접된 알지네이트 미세캡슐을 이용한 조직공학적 연골재생

  • Kim, A Ram (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Kim, Hye Min (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Lee, Jung Keun (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Lee, Ji Hye (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Song, Jeong Eun (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Yoon, Kun Ho (Division of Endocrinology and Metabolism, Deparyment of insternal Medicine, College of Medicine, The Catholic UNiversity of Korea) ;
  • Lee, Dongwon (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Khang, Gilson (Dept. of Bin Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.)
  • 김아람 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 김혜민 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 이정근 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 이지혜 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 송정은 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 윤건호 (가톨릭대학교 의과대학 내분비내과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자소재융합연구소, 고분자나노공학과)
  • Received : 2012.06.20
  • Accepted : 2012.07.30
  • Published : 2012.11.25

Abstract

Alginate, obtained from the seaweeds, is a widely used biomaterial for cell transplantation, since its positive effect on viability of capsulized cells and its easier encapsulation capability of living cells. Demineralized bone powder (DBP), derived from the natural bone tissue, is widely applied for clinical trials for its low rate of reaction and antigenicity. A chondrocyte was seeded into an alginate with DBP of different contents, and a microcapsule was produced. The adhesion and proliferation of cells was observed through the MTT analysis, and the PCR was applied to estimate the content of the glycosaminoglycan (sGAG) and collagen, and confirm the specific genetic pattern of the chondrocytes. Also, the alginate microcapsule where the chondrocyte is seeded was extracted after transplantation under the skin of a nude mouse, and was immunochemically stained. The experimental result confirmed that the alginate microcapsule containing 1% of DBP not only showed the highest proliferation of cell but had a positive effect of chondrocytes by the interaction between the alginates and the growth factor in DBP. It can be expected that the microcapsule with application of the alginates and DBP might be an appropriate scaffold for tissue engineering.

해조류로부터 얻어지는 알지네이트는 캡슐화된 세포의 생존율에 긍정적인 영향을 끼치며 살아있는 세포를 신속하게 포접하여 캡슐화할 수 있어 세포이식을 위한 생체재료 분야에 널리 쓰인다. 탈미네랄화된 골분(DBP)은 천연 뼈조직으로부터 유래되어 조직과의 반응정도가 낮고 항원성 또한 낮아 임상에 적용되어 사용되어 왔다. 알지네이트에 비율별 DBP을 포함시켜 연골세포를 파종한 뒤 미세캡슐을 제조한 후 MTT 분석을 통하여 세포의 부착 및 증식률을 관찰하였고 glycosaminoglycan(sGAG)와 콜라겐 함량 측정과 연골세포의 특정유전자 표현형을 확인하기 위하여 PCR을 실시하였다. 또한 연골세포가 파종된 알지네이트 미세캡슐을 누드마우스의 피하에 이식한 뒤 적출하여 면역화학적 염색을 실시하였다. 실험 결과 1%의 DBP를 함유한 알지네이트 미세캡슐에서 가장 높은 세포 증식률을 보였고 표현형 유지에도 긍정적인 영향을 미치는 것을 확인하였다. 이번 연구 결과를 토대로 알지네이트와 DBP를 이용한 미세캡슐을 제조함으로써 DBP내의 성장인자와 알지네이트의 상호작용으로 인하여 연골세포의 성장에 긍정적인 영향을 미쳐 생체공학적 지지체로 적합할 것으로 예상된다.

Keywords

References

  1. S. R. Caliaria, M. A. Ramirezb, and B. A. C. Harley, Biomaterials, 32, 8990 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.035
  2. M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. S. Langer, T. B. Sufdemorte, and A. G. Mikos, Tissue Eng. Part A, 1, 41 (1995). https://doi.org/10.1089/ten.1995.1.41
  3. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  4. T. H. Kim, J. H. Ko, S. J. Kim, and Y. H. Park, Int. J. Tissue Regen., 2, 1 (2011).
  5. A. Thomas, K. G. Harding, and K. Moore, Biomaterials, 21, 1797 (2000). https://doi.org/10.1016/S0142-9612(00)00072-7
  6. J. P. Vacanti and R. Langer, Lancet, 354, 32 (1999). https://doi.org/10.1016/S0140-6736(99)90247-7
  7. G. Orive, R. M. Hernandez, A. R. Gascon, R. Calafiore, T. M. S. Chang, P. D. Vos, G. Hortelano, D. Hunkeler, I. Lacik, A. M. J. Shapiro, and J. L. Pedraz, Nat. Med., 9, 104 (2003). https://doi.org/10.1038/nm0103-104
  8. H. N. Park, J. B. Lee, and I. K. Kwon, Int. J. Tissue Regen., 1, 10 (2010).
  9. K. Susan, D. Julie, P. Stefania, M. Martin, H. Jean-Pierre, and Y. L'Hocine, Biomaterials, 27, 1296 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.027
  10. J. Dusseault, S. K. Tam, M. Menard, S. Polizu, G. Jourdan, L. Yahia, and J. P. Halle, J. Biomed. Mater. Res., 76, 243 (2006).
  11. G. Klock, H. Frank, R. Houben, T. Zekorn, A. Horcher, U. Siebers, M. Wohrle, K. Federlin, and U. Zimmermann, Appl. Microbiol. Biotechnol., 40, 638 (1994). https://doi.org/10.1007/BF00173321
  12. C. Wandrey and D. S. Vidal, N. Y. Ann. Acad. Sci., 944, 187 (2001).
  13. C. Nadda, S. Neeracha, S. Keskanya, P. Prasit, and P. Muenduen, Carbohyd. Polym., 85, 548 (2011). https://doi.org/10.1016/j.carbpol.2011.03.011
  14. S. Rao, H. Mckellop, D. Chao, T. A. Schildhauer, E. Gendler, and T. M. Moore, Clin Orthop., 289, 131 (1993).
  15. J. Glowacki, J. E. Murray, L. B. Kaban, J. Folkman, and J. B. Mulliken, Lancet, 1, 959 (1981).
  16. M. S. Kim, S. J. Park, B. K. Gu, G. Khang, and C. Kim, Int. J. Tissue Regen., 2, 125 (2011).
  17. U. Zimmermann, G. Klock, K. Federlin, K. Haning, M. Kowaslski, R. G. Bretzel, A. Horcher, H. Entenmann, U. Siebers, and T. Zekorn, Electrophoresis., 13, 269 (1992). https://doi.org/10.1002/elps.1150130156
  18. T. Espevik, M. Otterlei, G. Skjåk-Bræk, L. Ryan, S. D. Wright, and A. Sundan, Eur. J. Immunol., 23, 255 (1993). https://doi.org/10.1002/eji.1830230140
  19. O. Y. Kim, S. J. Kim, Y. S. Song, E. H. Jo, J. H. Hwang, J. Y. Bae, I. S. Yoo, D. Lee, K. H. Yun, and G. Khang, Int. J. Tissue Regen., 2, 13 (2011).
  20. P. Goegan, G. Johnson, and R. Vincent, Toxic in Vitro, 9, 257 (1995). https://doi.org/10.1016/0887-2333(95)00004-R
  21. W. Huang, B. Carlsen, I. Wulur, G. Rudkina, K. Ishidaa, B. Wuc, D. T. Yamaguchia, and T. A. Miller, Exp. Cell Res., 299, 325 (2004). https://doi.org/10.1016/j.yexcr.2004.04.051
  22. J. Y. Bae, Y. N. Shin, J. H. Hwang, H. E. Kim, H. Yoon, D. Lee, K. H. Yoon, and G. Khang, Int. J. Tissue Regen., 2, 103 (2011).
  23. H. G. Sun, C. Wu, K. Dai, J. Chang, and T. Tang, Biomaterials, 27, 5651 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.027
  24. S. H. Kim, S. J. Yoon, B. S. Choi, H. J. Ha, J. M. Rhee, M. S. Kim, Y. S. Yang, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
  25. S. J. Yoon, S. H. Kim, H. J. Ha, Y. K. Ko, J. W. So, M. S. Kim, I. Y. Yang, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Part A, 14, 539 (2008). https://doi.org/10.1089/tea.2007.0129
  26. M. M. L. Deckers, R. L. van Bezooijen, G. van der Horst, J. Hoogendam, C. van der Bent, S. E. Papapoulos, and C. W. G. M. Lowik, Endocrinology, 143, 1545 (2002). https://doi.org/10.1210/en.143.4.1545
  27. K. S. Park, E. J. Kim, G. Khang, and H. B. Lee, Biomater. Res., 7, 120 (2003).
  28. M. R. Urist, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  29. J. W. Jang, M. O. Baek, S. H. Kim, J. H. Choi, J. C. Yang, H. H. Hong, H. K. Hong, J. M. Rhee, B. H. Min, and G. Khang, Polymer(Korea), 33, 104 (2009).
  30. R. G. Payne, J. S. Mc Gonigle, M. J. Yaszemski, A. W. Yasko, and A. G. Mikos, Biomaterials, 23, 4359 (2001).
  31. M. Matsuoka, B. Wispriyono, and H. Igisu, Biochem. Pharm., 59, 1573 (2000). https://doi.org/10.1016/S0006-2952(00)00280-X
  32. H. S. Shin, J. S. Temenoff, G. C. Bowden, K. Zyqourakis, M. C. Farach-Carson, M. J. Yaszemski, and A. G. Mikos, Biomaterials, 26, 3645 (2005). https://doi.org/10.1016/j.biomaterials.2004.09.050
  33. P. Soon-Shiong, M. Otterlei, G. Skjåk-Bræk, O. Smidsrod, R. Heintz, R. P. Lanza, and T. Espevik, Transplantation Proceedings, 23, 758 (1991).
  34. G. M. Aaron and S. K. Gregory, Tissue Eng. Part A, 15, 1301 (2009). https://doi.org/10.1089/ten.tea.2008.0118
  35. M. Otterlei, A. Sundan, G. Skjak-Braek, L. Ryan, O. Smidsrod, and T. Espevik, Infect Immun., 61, 1917 (1993).
  36. W. Y. Ahn, H. L. Kim, J. E. Song, D. Lee, and G. Khang, Polymer(Korea), 35, 499 (2011).
  37. J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, Biomaterials, 26, 1523 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.014
  38. B. S. Choi, S. H. Kim, S. J. Yun, H. J. Ha, M. S. Kim, Y. I. Yang, Y. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006).
  39. K. Nakatsuka, K. Kurita, T. Hayakawa, K. Nakashima, K. Yamashita, T. Hoshino, and K. Miyazaki, Int. J. Biomed. Sci., 6, 103 (2010).