DOI QR코드

DOI QR Code

Molecular Monitoring of Eukaryotic Plankton Diversity at Mulgeum and Eulsukdo in the Lower Reaches of the Nakdong River

낙동강 하류 물금과 을숙도 수환경의 진핵 플랑크톤 종조성에 대한 분자모니터링

  • Lee, Jee Eun (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Sang-Rae (Marine Research Institute, Pusan National University) ;
  • Youn, Seok-Hyun (National Fisheries Research and Development Institute) ;
  • Chung, Sang Ok (Tidal Flat Research Institute, National Fisheries Research and Development Institute) ;
  • Lee, Jin Ae (School of Environmental Science and Engineering, Inje University) ;
  • Chung, Ik Kyo (Division of Earth Environmental System, Pusan National University)
  • 이지은 (부산대학교 지구환경시스템학부) ;
  • 이상래 (부산대학교 해양연구소) ;
  • 윤석현 (국립수산과학원 수산해양종합정보과) ;
  • 정상옥 (국립수산과학원 갯벌연구소) ;
  • 이진애 (인제대학교 환경공학부) ;
  • 정익교 (부산대학교 지구환경시스템학부)
  • Received : 2012.04.28
  • Accepted : 2012.07.03
  • Published : 2012.08.31

Abstract

We have studied the eukaryotic plankton species diversity to compare the community structure of fresh and brackish waters in the lower reaches of the Nakdong River using metagenomic methods. We constructed 18S rDNA clone libraries of total DNAs extracted from environmental water samples collected at Mulgeum (MG100929, fresh) and Eulsukdo bridge (ES, brackish). Through the steps of colony PCR, PCR-RFLP, sequencing and similarity analysis, we discovered the diverse species composition of eukaryotic plankton. Total 338 clones (170 at MG100929 and 168 at ES) were analyzed, and then we found 74 phylotypes (49 for MG100929 and 25 for ES). From the phylogenetic analysis, we confirmed various eukaryotic plankton of broad range of taxonomic groups, including Stramenopiles, Cryptophyta, Viridiplantae, Alveolata, Rhizaria, Metazoa, and Fungi. We also found several unreported species in Korea and candidates of new taxonomic entities at levels higher than genus. Especially, the cryptic species diversity including unreported phylotypes of Pirsonia (Stramenopiles) and Perkinsea (Alveolata) suggests that the molecular monitoring method can produce new informative biological data in monitoring the changes in the Nakdong River Mouth ecosystem.

본 연구는 메타게놈 분석법을 기초로 낙동강 하류 담수 환경의 물금과 기수 환경의 을숙도대교 정점에서 채수된 환경 시료내의 진핵 플랑크톤 종다양성 및 군집 구조를 비교 분석하고자 하였다. 수환경 시료에서 추출된 DNA에 대한 environmental Polymerase Chain Reaction(PCR)을 수행하여 18S rDNA 클론라이브러리를 구축하였고, colony PCR, PCR-Restriction Fragment Length Polymorphism(RFLP), 염기서열 결정 및 유사도 분석을 통하여 종다양성을 분석하였다. 물금 및 을숙도대교 정점에서 338개의 클론들을 분석하였고(170 clones, 물금; 168 clones, 을숙도대교), 그 결과 총 74개의 phylotype을 발굴하였다(49개, 물금; 25개, 을숙도대교). 발굴된 phylotype에 대한 계통 분석 결과, Stramenopiles, Cryptophyta, Viridiplantae, Alveolata, Rhizaria, Metazoa 및 Fungi 등의 분류군에 속하는 다양한 생물종이 발굴되었으며, 국내 미기록종 및 신종 후보 가능 생물종과 속(genus)이상의 새로운 분류학적 처리가 필요한 생물종의 존재를 확인하였다. 특히 Stramenopiles의 Pirsonia 및 Alveolata의 Perkinsea에 속하는 phylotypes 등 국내 미기록 생물종을 포함한 숨은 종다양성(cryptic species diversity)의 발굴은 분자모니터링 기법이 낙동강 하구역 수생태계 변화 모니터링을 위한 새로운 유용한 생물학적 정보를 제공할 수 있음을 제시하고 있다.

Keywords

References

  1. 김보경, 이상래, 이진애, 정익교, 2010. 분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석. 한국해양학회지 바다, 15: 25-36 (=Kim et al. (2010) in Tables 2 and 3).
  2. 문은영, 김영옥, 김백호, 공동수, 한명수, 2004. 팔당호 섬모충 플랑크톤 분류 및 생태학적 연구. 한국육수학회지, 37: 149-179.
  3. 문창호, 최혜지, 1991. 낙동강 하구 환경특성 및 식물플랑크톤의 군집구조에 관한 연구. 한국해양학회지, 26: 144-154.
  4. 박재림, 하 경, 손연주, 주기재, 2001. 낙동강 중, 하류에서 식물 플랑크톤과 세균의 계절적 동태. 한국환경과학회지, 10: 529-267.
  5. 박태규, 김성연, 2010. 선박평형 수 내 유해 와편모조류(Dinophyceae)의 분자생물학적 검출. 한국해양학회지 바다, 15: 36-40.
  6. 신만균, 최기룡, 1996. 울산공단 주변의 토양오염에 따른 원생동물의 분포. 한국환경과학회지, 5: 187-194.
  7. 윤지미, 이지은, 이상래, 노태근, 이진애, 정익교, 이동섭, 2012. 부산 연안역의 진핵플랑크톤 종다양성에 대한 메타게놈 분석 연구. 한국해양학회지 바다 17: 59-75.
  8. 임병진, 김범철, 유광일, 유재근, 1997. 낙동강에서 남조류 대발 생시 동물플랑크톤 군집의 변화. 한국육수학회지, 30: 337-346.
  9. 정영호, 노경희, 이옥민, 1987. 식물플랑크톤에 의한 낙동강 하구와 하구언수역의 환경관리시안. 환경생물학회지, 5: 51-60.
  10. 정익교, 강영작, 권오섭, 서정관, 2000. 낙동강 하구 해역 식물플랑크톤의 군집 동태. Algae, 15: 99-110.
  11. 최철만, 김진호, 김원일, 이종식, 정구복, 이정택, 문성기, 2007. 낙동강하류의 식물플랑크톤상과 군집구조. 한국환경농학회지, 26: 159-170. https://doi.org/10.5338/KJEA.2007.26.2.159
  12. Alverson, A.J., R.K. Jansen and E.C. Theriot, 2007. Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol. Phylogenet. Evol., 45: 193-210. https://doi.org/10.1016/j.ympev.2007.03.024
  13. Andersen, R.A., Y.V. Peer, D. Potter, J.P. Sexton, M. Kawachi and T. LaJeunesse, 1999. Phylogenetic Analysis of the SSU rRNA from Members of the Chrysophyceae. Protist, 150: 71-84. https://doi.org/10.1016/S1434-4610(99)70010-6
  14. Anderson, D.M., D.M. Kulis, G.J. Doucette, J.C. Gallagher and E. Balech, 1994. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and Canada. Mar. Biol., 120: 467-478. https://doi.org/10.1007/BF00680222
  15. Behnke, A., K.J. Barger, J. Bunge and T. Stoeck, 2010. Spatio-temporal variations in protistan communities along and $O_{2}/H_{2}S$ gradient in the anoxic Frmvaren Fjord (Norway). FEMS Microbiol. Ecol., 72: 89-102. https://doi.org/10.1111/j.1574-6941.2010.00836.x
  16. Chen, M., F. Chen, Y. Yu, J. Ji and F. Kong, 2008. Genetic diversity of eukaryotic microorganisms in lake Taihu, a large shallow subtropical lake in China. Microb. Ecol., 56: 572-583. https://doi.org/10.1007/s00248-008-9377-8
  17. DeLong, E.F., 2007. Microbial domains in the Ocean: A lesson from the Archaea. Oceanography, 20: 124-129.
  18. DeLong, E.F., 2009. The microbial ocean from genomes to biomes. Nature, 459: 200-206. https://doi.org/10.1038/nature08059
  19. Geist, J., 2011. Intergrative freshwater ecology and biodiversity conservation. Ecol. Indic., 11: 1507-1516. https://doi.org/10.1016/j.ecolind.2011.04.002
  20. Guillou, L., M. Viprey, A. Chambouvet, R.M. Welsh, A.R. Kirkham, R. Massana, D.J. Scanlan and A.Z. Worden, 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol., 10: 3349-3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x
  21. Handelsman, J., 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  22. Hoef-Emden, K., B. Marin and M. Melkonian, 2002. Nuclear and Nucleomorph SSU rDNA Phylogeny in the Cryptophyta and the Evolution of Cryptophyte Diversity. J. Mol. Evol., 55: 161-179. https://doi.org/10.1007/s00239-002-2313-5
  23. Hays, G.C., A.J. Richardson and C. Robinson, 2005. Climate change and marine plankton. Trends Ecol. Evol., 20: 337-344. https://doi.org/10.1016/j.tree.2005.03.004
  24. Jeanmougin, F., J.D. Thompson, M. Gouy, D.G. Higgins and T.J. Gibson, 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci., 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
  25. Jo, O.J., Y.U. Kim and M.K. Shin, 2005. Redescription of three newly recorded Gastrostyla ciliates (Ciliophora: Spirotrichea: Stichotrichida) with morphological variations from Korea. Korean J. Syst. Zool., 21: 45-56.
  26. Joo, S.B., S.-R. Lee and S.K. Park, 2010. Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism (T-RFLP). J. Microbiol. Methods, 81: 61-68. https://doi.org/10.1016/j.mimet.2010.01.025
  27. Jurgens, K. and E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res., 22: 1047-1070. https://doi.org/10.1093/plankt/22.6.1047
  28. Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler and F. Schiemer, 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. J. Plankton Res., 25: 243-253. https://doi.org/10.1093/plankt/25.3.243
  29. Kim, H.-W., K.-H. Chang and G.-J. Joo, 2005. Characteristics and Inter-annual variability of zooplankton dynamics in the middle part of the river (Nakdong River). Kor. J. Limnol., 38: 412-419.
  30. Kim, J.-H., S.M. Boo and W. Shin, 2007. Two Freshwater Cryptomonads New to Korea: Cryptomonas marssonii and C. pyrenoidifera. Algae, 22: 147-152. https://doi.org/10.4490/ALGAE.2007.22.3.147
  31. Kim, J.S. and H.J. Jeong, 2004. Feeding by the heterotrophic dinoflageelates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser., 280: 85-94. https://doi.org/10.3354/meps280085
  32. Kooistra, W.H.C.F., D. Sarno, S. Balzano, H. Gu, R.A. Andersen and A. Zingone, 2008. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist, 159: 177-193. https://doi.org/10.1016/j.protis.2007.09.004
  33. Lee, S.-R., J.H. Oak, I.K. Chung and J.A. Lee, 2010. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP, and sequencing. J. Appl. Phycol., 22: 699-707. https://doi.org/10.1007/s10811-010-9509-7
  34. Lee, S.-R., T. Rho, J.H. Oak, J.A. Lee, T. Lee and I.K. Chung, 2012. Metagenomic examination of diversity within eukaryotic plankton from the Ulleung Basin in the East Sea of Korea. J. Plant Biol. 55: 310-315. https://doi.org/10.1007/s12374-011-0031-0
  35. Long, H. and R.A. Zufall, 2010. Diverse modes of reproduction in the marine free-living ciliate Glauconema trihymene. BMC Microbiol., 10: 108-118. https://doi.org/10.1186/1471-2180-10-108
  36. Luo, W., C. Bock, H.R. Li, J. Padisak and L. Krienitz, 2011. Molecular and microscopic diversity of planktonic eukaryotes in the oligotrophic Lake Stechlin (Germany). Hydrobiologia, 661: 133-143. https://doi.org/10.1007/s10750-010-0510-6
  37. McHugh, D., 2000. Molecular phylogeny of the Annelida. Can. J. Zool., 78: 1873-1884. https://doi.org/10.1139/z00-141
  38. Medlin, L.K., H.J. Elwood and S. Stickel and M.L. Sogin, 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71: 491-499. https://doi.org/10.1016/0378-1119(88)90066-2
  39. Medlin, L.K. and K. Töbe, 2011. Molecular techniques to estimate biodiversity with case studies from the marine phytoplankton. In Sofo A (ed) Biodiversity, Croatia, InTech, pp 118-138.
  40. Monchy, S., G. Sanciu, M. Jobard, S. Rasconi, M. Gerphagnon, M. Chabé, A. Cian, D. Meloni, N. Niquil, U. Christaki, E. Viscogliosi and T. Sime-Ngando, 2011. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/ sequencing and SSU tag pyrosequencing. Environ. Microbiol., 13: 1433-1453. https://doi.org/10.1111/j.1462-2920.2011.02444.x
  41. Moon-van der Staay, S.Y., R. De Wachter and D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409: 607-610. https://doi.org/10.1038/35054541
  42. Not, F., R. Gausling, F. Azam, J.F. Heidelberg and A.Z. Worden, 2007. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol. 9: 1233-1252. https://doi.org/10.1111/j.1462-2920.2007.01247.x
  43. Park, S.-J., B.-J. Park, V.H. Pham, D.-N. Yoon, S.-K. Kim and S.-K. Rhee, 2008. Microeukaryotic diversity in marine environments, and analysis of surface layer sediments from the East Sea. J. Microbiol., 46: 244-249. https://doi.org/10.1007/s12275-007-0237-x
  44. Potter, D., T.C. Lajeunesse, G.W. Saunders and R.A. Anderson, 1997. Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodvers. Conserv., 6: 99-107. https://doi.org/10.1023/A:1018379716868
  45. Richards, T.A., A.A. Vepritskiy, D.E. Gouliamova and S.A. Nierzwicki-Bauer, 2005. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ. Microbiol., 7: 1413-1425. https://doi.org/10.1111/j.1462-2920.2005.00828.x
  46. Romari, K. and D. Vaulot, 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr., 49: 784-798. https://doi.org/10.4319/lo.2004.49.3.0784
  47. Sarno, D., W.H.C.F. Kooistra, S. Balzano, P.E. Hargraves and A. Zingone, 2007. Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. Nov., J. Phycol., 43: 156-170. https://doi.org/10.1111/j.1529-8817.2006.00305.x
  48. Savin, M.C., J.L. Martin, M. LeGresley, M. Giewat and J. Rooney- Varga, 2004. Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb. Ecol., 48: 51-65. https://doi.org/10.1007/s00248-003-1033-8
  49. Seo, J.K. and I.K. Chung, 1994. The phytoplankton community structure in the Nakdong river mouth. Korean J. Limnol., 17: 227-250.
  50. Shen, X., X. Ma, J. Ren and F. Zhao, 2009. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics, 10: 136-146. https://doi.org/10.1186/1471-2164-10-136
  51. Stoeck, T., A. Zuendorf, H.-W. Breiner and A. Behnke, 2007. A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microb. Ecol., 53: 328-339. https://doi.org/10.1007/s00248-006-9166-1
  52. Swofford, D.L., 2001. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland.
  53. Unrein, F., I. Izaguirre, R. Massana, V. Balague and J.M. Gasol, 2005. Nanoplankton assemblages in maritime Antarctic lakes: characterization and molecular fingerprinting comparison. Aquat. Microb. Ecol., 40: 269-282. https://doi.org/10.3354/ame040269
  54. Yang J.R. and M. Dickman, 1993. Diatoms as indicators of lake trophic status in Central Ontario, Canada. Diatom Res., 8: 179-193. https://doi.org/10.1080/0269249X.1993.9705249

Cited by

  1. Literature Survey on the Phytoplankton Flora in the Nakdong River Estuary, Korea vol.46, pp.4, 2013, https://doi.org/10.5657/KFAS.2013.0467
  2. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea vol.35, pp.4, 2017, https://doi.org/10.1007/s00343-017-6076-7
  3. New report on cyanophyte in Korea, Microseira wollei (Farlow ex Gomont) G.B.McGregor and Sendall ex Kennis (Oscillatoriaceae) vol.9, pp.3, 2012, https://doi.org/10.12651/jsr.2020.9.3.210