DOI QR코드

DOI QR Code

Widely Tunable 1.55-${\mu}m$ Detuned Dual-Mode Laser Diode for Compact Continuous-Wave THz Emitter

  • Kim, Nam-Je (Creative & Challenging Research Laboratory, ETRI) ;
  • Leem, Young-Ahn (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Ko, Hyun-Sung (Creative & Challenging Research Laboratory, ETRI) ;
  • Jeon, Min-Yong (Department of Physics, Chungnam National University) ;
  • Lee, Chul-Wook (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Han, Sang-Pil (Creative & Challenging Research Laboratory, ETRI) ;
  • Lee, Dong-Hun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Kyung-Hyun (Creative & Challenging Research Laboratory, ETRI)
  • Received : 2010.11.09
  • Accepted : 2011.05.03
  • Published : 2011.10.31

Abstract

We report the use of a widely tunable detuned dual-mode laser diode (DML) as a compact and portable continuous-wave THz emitter. The wavelength difference between the two lasing modes of this DML can be tuned from 2.4 nm to 9.3 nm by using integrated microheaters. The power difference between these modes is less than 1 dB, and the side-mode suppression ratio is greater than 30 dB over the entire tuning range.

Keywords

References

  1. M. Tonouchi, "Cutting-Edge Terahertz Technology," Nature Photon., vol. 1, 2007, pp. 97-105. https://doi.org/10.1038/nphoton.2007.3
  2. I. Hosako et al., "At the Dawn of a New Era in Terahertz Technology," Proc. IEEE., vol. 95, no. 8, Aug. 2007, pp. 1611- 1623. https://doi.org/10.1109/JPROC.2007.898844
  3. I.S. Gregory et al., "Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission," IEEE J. Quantum Electron., vol. 41, no. 5, May 2005, pp. 717-728. https://doi.org/10.1109/JQE.2005.844471
  4. J.R. Demers, R.T. Logan Jr., and E.R. Brown, "An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB," Microw. Photonics Tech. Digest, Victoria, Canada, Oct. 2007, pp. 92-95.
  5. H. Page et al., "Waveguide Coupled Terahertz Photoconductive Antennas: Toward Integrated Photonic Terahertz Devices," Appl. Phys. Lett., vol. 92, Apr. 2008, pp. 163502-1 - 163502-3. https://doi.org/10.1063/1.2909539
  6. M. Tani et al., "Generation of Terahertz Radiation by Photomixing with Dual- and Multiple-Mode Lasers," Semicond. Sci. Technol. vol. 20, no. 7, July 2005, pp. S151-S163. https://doi.org/10.1088/0268-1242/20/7/005
  7. S. Hoffmann et al., "Two-Colour Diode Lasers for Generation of THz Radiation," Semicond. Sci. Technol., vol. 20, June 2005, pp. S205-S210. https://doi.org/10.1088/0268-1242/20/7/010
  8. S. Osborne et al., "Generation of CW 0.5 THz Radiation by Photomixing the Output of a Two-Colour 1.49 ${\mu}m$ Fabry-Perot Diode Laser," Electron. Lett., vol. 44, no. 4, Feb. 2008, pp. 296-297 https://doi.org/10.1049/el:20083534
  9. A. Klehr et al., "High-Power Monolithic Two-Mode DFB Laser Diode for the Generation of THz Radiation," IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 2, Mar. 2008, pp. 289-294. https://doi.org/10.1109/JSTQE.2007.913119
  10. R.K. Price et al., "Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning," IEEE Photon. Technol. Lett., vol. 19, no. 20, Oct. 2007, pp. 1610-1612. https://doi.org/10.1109/LPT.2007.904914
  11. N. Kim et al., "Monolithic Dual-Mode Distributed Feedback Semiconductor Laser for Tunable Continuous-Wave Terahertz Generation," Opt. Exp., vol. 17, no. 16, Aug. 2009, pp 13851- 13859. https://doi.org/10.1364/OE.17.013851
  12. H. Ishii et al., "Narrow Spectral Linewidth Under Wavelength Tuning in Thermally Tunable Super-Structure-Grating (SSG) DBR Lasers," IEEE J. Sel. Topics Quantum. Electron., vol. 1, no. 2, June 1995, pp 401-407. https://doi.org/10.1109/2944.401222
  13. M. Mohrle et al., "Detuned Grating Multisection-RW-DFB Lasers for High-Speed Optical Signal Processing," IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 2, Mar. 2001, pp. 217-222. https://doi.org/10.1109/2944.954133
  14. Y.A. Leem et al., "Self-Pulsation in Multi-section Laser Diodes with a DFB Reflector," IEEE Photon. Technol. Lett., vol. 18, no. 4, Feb. 2006, pp. 622-624. https://doi.org/10.1109/LPT.2006.870186
  15. L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, NY: John Wiley, 1995.
  16. T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel Method for High Resolution Measurement of Laser Output Spectrum," Electron. Lett., vol. 16, no. 6, July 1980, pp 630-631. https://doi.org/10.1049/el:19800437
  17. J. Zoz and U. Barabas, "Linewidth Enhancement in Laser Diodes Caused by Temperature Fluctuations," IEE Proc. Optoelectron., vol. 141, no. 3, June 1994, pp. 191-194. https://doi.org/10.1049/ip-opt:19941084

Cited by

  1. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation. vol.20, pp.16, 2011, https://doi.org/10.1364/oe.20.017496
  2. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. vol.20, pp.16, 2011, https://doi.org/10.1364/oe.20.018432
  3. Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator vol.35, pp.3, 2011, https://doi.org/10.4218/etrij.13.0112.0305
  4. Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter vol.10, pp.8, 2011, https://doi.org/10.1088/1612-2011/10/8/085805
  5. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner vol.21, pp.22, 2011, https://doi.org/10.1364/oe.21.025874
  6. Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity vol.22, pp.3, 2011, https://doi.org/10.1364/oe.22.002259
  7. 초소형의 광섬유 결합형 테라헤르츠 모듈을 이용한 시간영역에서의 분광 및 이미징 vol.25, pp.2, 2011, https://doi.org/10.3807/kjop.2014.25.2.072
  8. A $10 \times 10$-Gb/s DFB-LD Array Integrated With PLC-Based AWG for 100-Gb/s Transmission vol.26, pp.21, 2014, https://doi.org/10.1109/lpt.2014.2349072
  9. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector vol.22, pp.23, 2011, https://doi.org/10.1364/oe.22.028977
  10. A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection vol.17, pp.12, 2011, https://doi.org/10.1088/2040-8978/17/12/125802
  11. A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection vol.17, pp.12, 2011, https://doi.org/10.1088/2040-8986/17/12/125802
  12. SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System vol.38, pp.4, 2011, https://doi.org/10.4218/etrij.16.0115.0882
  13. In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source vol.4, pp.6, 2011, https://doi.org/10.3807/copp.2020.4.6.461