References
- M. Tonouchi, "Cutting-Edge Terahertz Technology," Nature Photon., vol. 1, 2007, pp. 97-105. https://doi.org/10.1038/nphoton.2007.3
- I. Hosako et al., "At the Dawn of a New Era in Terahertz Technology," Proc. IEEE., vol. 95, no. 8, Aug. 2007, pp. 1611- 1623. https://doi.org/10.1109/JPROC.2007.898844
- I.S. Gregory et al., "Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission," IEEE J. Quantum Electron., vol. 41, no. 5, May 2005, pp. 717-728. https://doi.org/10.1109/JQE.2005.844471
- J.R. Demers, R.T. Logan Jr., and E.R. Brown, "An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB," Microw. Photonics Tech. Digest, Victoria, Canada, Oct. 2007, pp. 92-95.
- H. Page et al., "Waveguide Coupled Terahertz Photoconductive Antennas: Toward Integrated Photonic Terahertz Devices," Appl. Phys. Lett., vol. 92, Apr. 2008, pp. 163502-1 - 163502-3. https://doi.org/10.1063/1.2909539
- M. Tani et al., "Generation of Terahertz Radiation by Photomixing with Dual- and Multiple-Mode Lasers," Semicond. Sci. Technol. vol. 20, no. 7, July 2005, pp. S151-S163. https://doi.org/10.1088/0268-1242/20/7/005
- S. Hoffmann et al., "Two-Colour Diode Lasers for Generation of THz Radiation," Semicond. Sci. Technol., vol. 20, June 2005, pp. S205-S210. https://doi.org/10.1088/0268-1242/20/7/010
-
S. Osborne et al., "Generation of CW 0.5 THz Radiation by Photomixing the Output of a Two-Colour 1.49
${\mu}m$ Fabry-Perot Diode Laser," Electron. Lett., vol. 44, no. 4, Feb. 2008, pp. 296-297 https://doi.org/10.1049/el:20083534 - A. Klehr et al., "High-Power Monolithic Two-Mode DFB Laser Diode for the Generation of THz Radiation," IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 2, Mar. 2008, pp. 289-294. https://doi.org/10.1109/JSTQE.2007.913119
- R.K. Price et al., "Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning," IEEE Photon. Technol. Lett., vol. 19, no. 20, Oct. 2007, pp. 1610-1612. https://doi.org/10.1109/LPT.2007.904914
- N. Kim et al., "Monolithic Dual-Mode Distributed Feedback Semiconductor Laser for Tunable Continuous-Wave Terahertz Generation," Opt. Exp., vol. 17, no. 16, Aug. 2009, pp 13851- 13859. https://doi.org/10.1364/OE.17.013851
- H. Ishii et al., "Narrow Spectral Linewidth Under Wavelength Tuning in Thermally Tunable Super-Structure-Grating (SSG) DBR Lasers," IEEE J. Sel. Topics Quantum. Electron., vol. 1, no. 2, June 1995, pp 401-407. https://doi.org/10.1109/2944.401222
- M. Mohrle et al., "Detuned Grating Multisection-RW-DFB Lasers for High-Speed Optical Signal Processing," IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 2, Mar. 2001, pp. 217-222. https://doi.org/10.1109/2944.954133
- Y.A. Leem et al., "Self-Pulsation in Multi-section Laser Diodes with a DFB Reflector," IEEE Photon. Technol. Lett., vol. 18, no. 4, Feb. 2006, pp. 622-624. https://doi.org/10.1109/LPT.2006.870186
- L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, NY: John Wiley, 1995.
- T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel Method for High Resolution Measurement of Laser Output Spectrum," Electron. Lett., vol. 16, no. 6, July 1980, pp 630-631. https://doi.org/10.1049/el:19800437
- J. Zoz and U. Barabas, "Linewidth Enhancement in Laser Diodes Caused by Temperature Fluctuations," IEE Proc. Optoelectron., vol. 141, no. 3, June 1994, pp. 191-194. https://doi.org/10.1049/ip-opt:19941084
Cited by
- Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation. vol.20, pp.16, 2011, https://doi.org/10.1364/oe.20.017496
- Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. vol.20, pp.16, 2011, https://doi.org/10.1364/oe.20.018432
- Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator vol.35, pp.3, 2011, https://doi.org/10.4218/etrij.13.0112.0305
- Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter vol.10, pp.8, 2011, https://doi.org/10.1088/1612-2011/10/8/085805
- InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner vol.21, pp.22, 2011, https://doi.org/10.1364/oe.21.025874
- Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity vol.22, pp.3, 2011, https://doi.org/10.1364/oe.22.002259
- 초소형의 광섬유 결합형 테라헤르츠 모듈을 이용한 시간영역에서의 분광 및 이미징 vol.25, pp.2, 2011, https://doi.org/10.3807/kjop.2014.25.2.072
-
A
$10 \times 10$ -Gb/s DFB-LD Array Integrated With PLC-Based AWG for 100-Gb/s Transmission vol.26, pp.21, 2014, https://doi.org/10.1109/lpt.2014.2349072 - Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector vol.22, pp.23, 2011, https://doi.org/10.1364/oe.22.028977
- A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection vol.17, pp.12, 2011, https://doi.org/10.1088/2040-8978/17/12/125802
- A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection vol.17, pp.12, 2011, https://doi.org/10.1088/2040-8986/17/12/125802
- SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System vol.38, pp.4, 2011, https://doi.org/10.4218/etrij.16.0115.0882
- In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source vol.4, pp.6, 2011, https://doi.org/10.3807/copp.2020.4.6.461