DOI QR코드

DOI QR Code

Low-temperature Synthesis of (TiC+Al2O3) Reinforced Al Matrix Composite Based on Self-combustion Reaction

자발연소반응을 이용한 (TiC+Al2O3)/Al 복합재료의 저온합성

  • Lee, Jung-Moo (Structural Materials Division, Korea Institute of Materials Science) ;
  • Kim, Su-Hyeon (Structural Materials Division, Korea Institute of Materials Science) ;
  • Cho, Young-Hee (Structural Materials Division, Korea Institute of Materials Science) ;
  • Kim, Je-Woo (Department of Material Science and Engineering, Korea University) ;
  • Lee, Jae-Chul (Department of Material Science and Engineering, Korea University)
  • 이정무 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 김수현 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 조영희 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 김제우 (고려대학교 신소재공학부) ;
  • 이재철 (고려대학교 신소재공학부)
  • Received : 2011.07.28
  • Published : 2011.12.25

Abstract

The formation of TiC and $Al_2O_3$ particles based on the self-combustion reaction of the $Al-TiO_2-C-CuO$ system in an Al alloy melt was investigated. With an adequate amount of CuO in the system, a spontaneous reaction occurred within the Al alloy melt at $850^{\circ}C$ and thereafter was self-maintained, producing an Al matrix composite reinforced with thermodynamically stable TiC and $Al_2O_3$ particles. TiC and $Al_2O_3$ particles contributed to a considerable increase in the strength and stiffness, demonstrating the feasibility of this method as a practical application for structural parts.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. M.G. McKimpson and T.E. Scott, Mater. Sci. Eng. A 93, 107 (1989).
  2. J.C. Lee. J.Y. Byun, S.B. Park, and H.I. Lee, Acta Mater. 46, 1771 (1998). https://doi.org/10.1016/S1359-6454(97)00265-6
  3. A.G. Merzhanov, Ceramic Inter 21, 371 (1995). https://doi.org/10.1016/0272-8842(95)96211-7
  4. S.C. Tiong and Z.Y. Ma, Mater. Sci. Eng. A. 29, 49 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3
  5. Z.Y. Ma, J. Bi, Y.X. Lu, H.W. Shen, and Y.X. Gao, Composites Interface 1, 287 (1993).
  6. Y.H. Liu, S. Yin, Z.M. Guo, and H.Y. Lai, J. Mater. Res. 13, 1749 (1998). https://doi.org/10.1557/JMR.1998.0244
  7. Y. Lin, R.H. Zee, and B.A. Chin, Metall. Mater. Trans. 22A, 859 (1991).
  8. P.C Maity, S.C. Panigrahi, and P.N. Chakraborty, Scr. Metall. 28, 549 (1993). https://doi.org/10.1016/0956-716X(93)90194-W
  9. C.R. Bowen and B. Derby, J. Mater. Sci. 31, 3792 (1996).
  10. T.D. Xia, T.Z. Liu, W.J . Zhao, and B.Y. Ma, J. Mater. Sci. 36, 5581 (2001). https://doi.org/10.1023/A:1012505413805
  11. L. Chen and E. Kny, Inter. J. Refract. Metals Hard Mater. 18, 163 (2000). https://doi.org/10.1016/S0263-4368(00)00017-2
  12. A.O. Kunrath, T. R. Strohaecker, and J. J. Moore, Scr. Mater. 36, 189 (1996).
  13. Z. Wang and X. Liu, J. Mater. Sci. 40, 1047 (2005). https://doi.org/10.1007/s10853-005-6532-1