DOI QR코드

DOI QR Code

Dissolution and Precipitation behaviors of Complex Carbonitrides in Austenite of a V-Nb Microalloyed Steel

V-Nb Microalloyed 강의 오스테나이트역에서 복합 탄질화물의 재용해 및 석출 거동

  • Ha, Yangsoo (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Jae-Gil (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
  • 하양수 (연세대학교 공과대학 신소재공학과) ;
  • 정재길 (연세대학교 공과대학 신소재공학과) ;
  • 이영국 (연세대학교 공과대학 신소재공학과)
  • Received : 2011.06.29
  • Published : 2011.12.25

Abstract

Dissolution and precipitation behaviors of complex carbonitrides in austenite of a V-Nb microalloyed steel were quantitatively examined through electrical resistivity measurement and transmission electron microscopy. The electrical resistivity increased with solution treatment temperature up to $1240^{\circ}C$ and then was saturated at $225n{\Omega}m$ for a holding time of 10 min. The electrical resistivity method was also used to quantitatively measure the isothermal precipitation kinetics of the complex carbonitrides in austenite. Nb-rich precipitates were observed in austenite at the early stages of precipitation, but Nb was replaced by V up to the equilibrium amount within the precipitates with further holding time. The time-temperature-precipitation diagram showed a C-type curve; nose temperature and its incubation time were $900^{\circ}C$ and 100 s, respectively.

Keywords

Acknowledgement

Grant : 초고장력 H 형강 및 철근 기술개발

Supported by : 지식경제부

References

  1. S.S. Campos, E.V. Morales, and H.J. Kestenbach, Metall. Mater. Trans. 32A, 1245 (2001).
  2. R.D.K. Misra, K.K. Tenneti, G.C. Weatherly, and G. Tither, Metall. Mater. Trans. 34A, 2341 (2003).
  3. B. Dutta and C.M. Sellars, Mater. Sci. Technol. 2, 146 (1985).
  4. M. Gomez, L. Rancel, and S. Medina, Met. Mater. Int. 15, 689 (2009). https://doi.org/10.1007/s12540-009-0689-0
  5. S.Y. Han, S.Y. Shin, S. Lee, J.H. Bae, and K. Kim, J. Kor. Inst. Met. & Mater. 47, 523 (2009).
  6. J.G. Jung, J.S. Park, Y.S. Ha, Y.K. Lee, J.H. Bae, and K. Kim, J. Korean Soc. Heat Treat. 21, 287 (2008).
  7. J.S. Park, and Y.K. Lee, Scr. Mater. 56, 225 (2007). https://doi.org/10.1016/j.scriptamat.2006.10.007
  8. J.C. Herman, B. Donnay, and V. Leroy, ISIJ Int., 32, 779 (1992). https://doi.org/10.2355/isijinternational.32.779
  9. S.S. Hansen, J.B.V. Sande, and M. Cohen, Metall. Trans. 11A, 387 (1980).
  10. S.G. Hong, K.B. Kang, and C.G. Park, Scr. Mater. 46, 163 (2002). https://doi.org/10.1016/S1359-6462(01)01214-3
  11. O. Kwon and A.J. DeArdo, Acta Mater. 39, 529 (1991). https://doi.org/10.1016/0956-7151(91)90121-G
  12. J.S. Park, Y.S. Ha, S.J. Lee, and Y.K. Lee, Metall. Mater. Trans. 40A, 560 (2009).
  13. A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra, and R.K. Ray, Scr. Mater. 53, 1309 (2005). https://doi.org/10.1016/j.scriptamat.2005.07.003
  14. J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee, Mater. Sci. Eng. A 528A, 5529 (2011).
  15. S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, and S. Jansto, Mater. Sci. Technol. 21, 165 (2005). https://doi.org/10.1179/174328405X18656
  16. S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, and S. Jansto, Mater. Sci. Technol. 21, 883 (2005). https://doi.org/10.1179/174328405X47564
  17. T. Gladman, The physical metallurgy of microalloyed steels, p.81-135, The institute of materials, Cambridge (1997).
  18. N. Saunders and A.P. Miodownik, CALPHAD, p. 61-87, Pergamon, London (1998).
  19. ASTM, F-76-86, p. 1-13, ASTM, Philadelphia (2002).
  20. S. Akhlaghi and D.G. Ivey, Can. Metall. Quart. 41, 111 (2002). https://doi.org/10.1179/000844302794406324
  21. G. Neumann and C. Tuijn, Self-diffusion and impurity diffusion in pure metals, 1st ed., p. 261-273, Elsevier (2009).