DOI QR코드

DOI QR Code

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air

P122강 용접부의 대기중 고온산화 부식속도와 스케일 분석

  • Bak, Sang-Hwan (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 박상환 (성균관대학교 신소재공학부) ;
  • 이동복 (성균관대학교 신소재공학부)
  • Received : 2011.04.11
  • Published : 2011.09.25

Abstract

P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. J. C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, and C. Jochum, Int. J. Pres. Ves. Pip. 85, 38 (2008). https://doi.org/10.1016/j.ijpvp.2007.06.011
  2. H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, J. Kor. Inst. Met. & Mater. 28, 409 (1990).
  3. S. Y. Bae, H. G. Kang, H. S. Yun, C. W. Kim, D. B. Lee, and B. S. Lim, Mater. Sci. Eng. A. 499, 262 (2009). https://doi.org/10.1016/j.msea.2008.04.076
  4. B. J. Kim, M. K. Kim, H. T. Dung, and B. S. Lim, Kor. J. Met. Mater. 48, 19 (2010). https://doi.org/10.3365/KJMM.2010.48.01.019
  5. B. H. Choe, K. B. Yoon, N. H. Lee, S. Kim, G. J. Lee, K. H. Kim, and D. I. Kwon, J. Kor. Inst. Met. & Mater. 46, 276 (2008).
  6. S. H. Kim, B. J. Song, I. H. Kuk, and W. S. Ryu, J. Kor. Inst. Met. & Mater. 38, 454 (2000).
  7. J. S. Hyun, K, B, Yoo, and H. S. Choi, J. Kor. Soc. Prec. Eng. 25, 116 (2008).
  8. K. Sawada, K. Kubo, and F. Abe, Mater. Sci. Eng. A 319, 784 (2001).
  9. J. C. Chang, N. H. Heo, and C. H. Lee, Met. Mater. Int. 17, 131 (2011). https://doi.org/10.1007/s12540-011-0218-9
  10. J. J. Shim, Y. H. Kim, and S. Y. Lee, J. Kor. Inst. Met. & Mater. 28, 409 (1990).
  11. A. Gustafson and M. Hattestrand, Mater. Sci. Eng. A 333, 279 (2002). https://doi.org/10.1016/S0921-5093(01)01874-3
  12. C. J. Wang and J. G. Duh, J. Mater. Sci. 23, 3447 (1988). https://doi.org/10.1007/BF00540477
  13. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA, (2008).
  14. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd Ed., Cambridge Univ. Press, UK, (2006).