DOI QR코드

DOI QR Code

기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동

Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling

  • 안진우 (부산대학교 나노소재공학과) ;
  • 황대연 (부산대학교 바이오소재과학과) ;
  • 김긍호 (한국과학기술연구원 나노분석센터) ;
  • 김혜성 (부산대학교 나노소재공학과)
  • Ahn, Jin Woo (Dept. of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University) ;
  • Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Gyeung-ho (Nano-Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Hye-Sung (Dept. of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University)
  • 투고 : 2011.03.28
  • 발행 : 2011.06.25

초록

In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.

키워드

참고문헌

  1. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson, Metall. Trans. 21A, 2333 (1990)
  2. J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992). https://doi.org/10.1557/JMR.1992.1751
  3. C.J. Youngdahl, P.G. Sanders, J.A. Eastman, and J.R. Weertman, Scripta Materialia 37, 809 (1997). https://doi.org/10.1016/S1359-6462(97)00157-7
  4. G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res. 6, 1012 (1991). https://doi.org/10.1557/JMR.1991.1012
  5. M. Jain and T. Christman, Acta Metallurgica et Materialia 42, 1901 (1994). https://doi.org/10.1016/0956-7151(94)90015-9
  6. J. Eckert, N. Schlorke, C.A.R.T. Miranda, L. Chultz, in: C.M.Ward-Close et al. (Ed.), Synthesis/Processing of Lightweight Metallic Materials II, TMS Annual Meeting, Minerals, Metals and Materials Soc. (TMS), Warrendale, PA, USA, p. 383 (1997).
  7. A. Calka and A.P. Radlinski, Mater. Sci. Eng. A118, 131 (1989).
  8. S. Hwang, C. Nishimura, and P.G. McCormick, Mater. Sci. Eng. A 318, 22 (2001).
  9. M. Grosjean, M. Zidoune, L. Roue, J. Huot, and R. Schulz, Electrochim. Acta 49, 2461 (2004). https://doi.org/10.1016/j.electacta.2004.02.001
  10. M. Zidoune, M.H. Grosjean, L. Roue, J. Huot, and R. Schulz, Corr. Sci. 46, 3041 (2004). https://doi.org/10.1016/j.corsci.2004.04.008
  11. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, and J. Fan, Corr. Sci. 52, 481 (2010). https://doi.org/10.1016/j.corsci.2009.10.004
  12. M. Hoseini, A. Shahryari, S. Omanovic, and JA. Szpunar, Corr. Sci. 51, 3064 (2009). https://doi.org/10.1016/j.corsci.2009.08.017
  13. H.J. Choi, Y. Kim, J.H. Shin, and D.H. Bae, Mater. Sci. Eng. A 527, 1565 (2010).
  14. J. Eckert, Nanostructrured Mater. 6, 413 (1995). https://doi.org/10.1016/0965-9773(95)00084-4
  15. H.S. Kim, D.S. Suhr, G.H. Kim, and D.W. Kum, Met. Mater. 2, 15 (1996). https://doi.org/10.1007/BF03025942
  16. G. B. Hamu, D. Elierzer, and L. Wagner, J. Alloys. Com. 468, 222 (2009). https://doi.org/10.1016/j.jallcom.2008.01.084
  17. H. Gabacz, M. Pisarek, and K.M. Kurzydlowski, Biomol. Eng. 24, 559 (2007). https://doi.org/10.1016/j.bioeng.2007.08.007
  18. R. Mishra and R. Balasubramaniam, Corr. Sci. 46, 3019 (2004). https://doi.org/10.1016/j.corsci.2004.04.007
  19. S.J. Thorpe, B. Ramaswami, and K.T. Aust. J. Electrochem. Soc. 135, 2162 (1988). https://doi.org/10.1149/1.2096233