DOI QR코드

DOI QR Code

Research on Afterglow Brightness of Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz by Solid State Synthesis

고상법으로 합성한 Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz계 축광성 형광체 장잔광의 연구

  • Kim, Seung-woo (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Jung-sik (Department of Materials Science and Engineering, University of Seoul)
  • 김승우 (서울시립대학교 신소재공학과) ;
  • 김정식 (서울시립대학교 신소재공학과)
  • Received : 2011.03.02
  • Published : 2011.04.25

Abstract

Long-lasting brightness $Sr_{4}Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^{+}$ phosphor was synthesized by modified solid state reaction and its photoluminescence was investigated. $Sr(NO_3)_{2}$ and $Al(NO_3)_3{\cdot}9H_{2}O$ as starting materials, and $B_{2}O_{3}$ as a flux were mixed with $Eu_{2}O_{3}$ as an activator, $Dy_{2}O_{3}$ as a coactivator, and $AgNO_{3}$ as a charge compensator. The crystalline of target powder showed a single-phase $Sr_{4}Al_{14}O_{25}$ by the XRD characterization and the average particle size was about 20-30 ${\mu}m$ from the FE-SEM observation. $Ag^{+}$ ion doping effects (0-0.06 mol) on $Sr_{4}Al_{14}O_{25}:Eu^{2+},\;Dy^{3+},\;Ag^{+}$ phosphor were measured by photoluminescence spectrometer and luminescence meter. The of photoluminescence intensity of the $Sr_{3.64}Al_{14}O_{25}:Eu_{0.11},\;Dy_{0.22},\;Ag_{0.03}$ phosphor was higher than other compositions and afterglow brightness was 0.186 $cd/m^{2}$.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996). https://doi.org/10.1149/1.1837067
  2. J. H. Yoon and J. S. Kim, Ionics 16, 131 (2010). https://doi.org/10.1007/s11581-009-0369-6
  3. K. M. Kang, M. J. Park, J. S. Kwak, H. S. Kim, K. w. Kwon, and Y. H. Kim, Kor. J. Met. Mater. 48, 456 (2010). https://doi.org/10.3365/KJMM.2010.48.05.456
  4. Y. L. Chang, H. I. Hsiang, and M. T. Liang, J. Alloys Compd. 461, 598 (2008). https://doi.org/10.1016/j.jallcom.2007.07.078
  5. C. Zhao, D. Chen, Y. Yuan, and M. Wu, Mater. Sci. Eng. (B). 133, 200 (2006). https://doi.org/10.1016/j.mseb.2006.06.042
  6. T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, and J. Niittykoski, J. Alloys Compd. 341, 76 (2002). https://doi.org/10.1016/S0925-8388(02)00068-3
  7. J. S. Kim, J. Ceram. Pro. Res. 10, 443 (2009).
  8. T. Ishigaki, H.Mizushina, K. Uematsu, N. Matsushita, M. Yoshimura, K. Toda, and M. Sato, Mater. Sci. Eng. (B). 173, 109 (2010). https://doi.org/10.1016/j.mseb.2009.11.004
  9. A. Nag and T. R. N. Kutty, J. Alloys Compd. 354, 221 (2003). https://doi.org/10.1016/S0925-8388(03)00009-4
  10. M. Capron and A. Douy, J. Am. Ceram. Soc. 85, 3036 (2002).
  11. L. Qun, Z. Junwu, and S. Feilong, J. Rare earths 28, 26 (2010). https://doi.org/10.1016/S1002-0721(09)60043-0
  12. S. K. Sharma, S. S. Pitale, M. M. Malik, R. N. Dubey, and M. S. Qureshi, J. Lumi. 129, 140 (2009). https://doi.org/10.1016/j.jlumin.2008.09.002
  13. T. Katsumata, R. Sakai, S. Komuro, and T. Morikawa, J. Electrochem. Soc. 150, H111 (2003). https://doi.org/10.1149/1.1565141
  14. Y. Lin, Z. Tang, and Z. Zhang, Mater. Letters 51, 14 (2001). https://doi.org/10.1016/S0167-577X(01)00257-9
  15. H. N. Luitel, T. Watari, T. Torikai, and M. Yada, Res. Letters Mater. Sci. 475074 p.1-4 (2009).
  16. S. D. Han, K. C. Singh, T. Y. Cho, H. S. Lee, D. Jakhar, J. P. Hulme, C. H. Han, J. D. Kim, I. S Chun, and J. Gwak, J. Lumi. 128, 301 (2008). https://doi.org/10.1016/j.jlumin.2007.07.017
  17. J. Kuang and Y. Liu, J. Lumi. 118, 33 (2006). https://doi.org/10.1016/j.jlumin.2005.06.005
  18. W. M. Yen, W. Jia, L. Lu, and H. Yuan, Phosphor with long persistent green phosphorescence, US Patent 6267911 B1 (2001).