DOI QR코드

DOI QR Code

준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성

Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase

  • 김도형 (공군 군수사령부, 제82항공정비창) ;
  • 김영균 (연세대학교, 준결정재료연구단) ;
  • 김원태 (청주대학교, 산업.레이저광정보공학부) ;
  • 김도향 (연세대학교, 준결정재료연구단)
  • 투고 : 2010.08.26
  • 발행 : 2011.02.25

초록

Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A302, 37 (2001).
  2. F. H. Froes, D. Eliezer, and E. Aghion, JOM, 30 (1998).
  3. S. R. Agnew, Magnesium Technology 2002, p.169, TMS, USA (2002).
  4. F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, Ch. Hartig, and K. U. Kainer, Magnesium Alloys, p.315, Trans. Tech. Pub., Switzerland (2003).
  5. D. H. Bae, S. H. Kim, W. T. Kim, and D. H. Kim, Acta Mater. 50, 2343 (2002). https://doi.org/10.1016/S1359-6454(02)00067-8
  6. J. Y. Lee, H. K. Lim, Do H. Kim, W. T. Kim, and D. H. Kim, Mater. Sci. Eng. A449-451, 987 (2007).
  7. Z. P. Luo, S. Q. Zhang, Y. L. Tang, and D. S. Zhao, Scripta Metall. 28, 1513 (1993). https://doi.org/10.1016/0956-716X(93)90584-F
  8. A. P. Tsai, A. Niikura, A. Inoue, and T. Masumoto, J. Mater. Res. 12, 1486 (1997).
  9. G. L. Makar and J. Kruger, Int. Mater. Rev. 38, 138 (1993). https://doi.org/10.1179/095066093790326320
  10. O. Lunder, J. E. Lein, T. Kr. Aune, and K. Nisancioglu, Corrosion 45, 741 (1989). https://doi.org/10.5006/1.3585029
  11. S. K. Das and L. A. Davis, Mater. Sci. Eng. 98, 1 (1988).
  12. G. Song, A. Atrens, and M. Dargusch, Corr. Sci. 41, 249 (1999).
  13. S. Yi, E. S. Park, J. B. Ok, W. T. Kim, and D. H. Kim, Mater. Sci. Eng. A300, 312 (2001).
  14. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003). https://doi.org/10.1016/S1359-6454(03)00005-3
  15. Y. Z. Lu, Q. D. Wang, X. Q. Zeng, W. J. Ding, C. Q. Zhai, and Y. P. Zhu, Mater. Sci. Eng. A66, 278 (2000).