DOI QR코드

DOI QR Code

저 Sn 함유 Zr-Nb-Sn-Fe 합금 튜브 제조 및 최종 열처리 온도에 따른 기계적/부식특성 변화

Processing of Low Tin Zr-1Nb-0.69Sn-0.11Fe Alloy Tubes and Effect of Final Heat Treatment on Their Mechanical and Corrosion Properties

  • 조남찬 (한국원자력연료 튜브사업단 운영팀) ;
  • 이종민 (충남대학교 응용소재공학과) ;
  • 홍순익 (충남대학교 응용소재공학과)
  • Cho, Nam Chan (Planning & Plant Service Team, Korea Nuclear Fuel) ;
  • Lee, Jong Min (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Hong, Sun Ig (Department of Advanced Materials Engineering, Chungnam National University)
  • 투고 : 2010.09.30
  • 발행 : 2011.01.25

초록

To investigate the relationship between heat treatment in zirconium alloy tubing process and metallurgical characteristics of Zr-1Nb-0.69Sn-0.11Fe alloy tubes, mechanical and oxidation behaviors of tubes heat treated at different temperatures after the final pilgering were investigated. The stress strain curves exhibited the saturation behaviors in all heat treatment conditions ($460{\sim}600^{\circ}C$) in this study with the onset strain of saturation increased with increase of post-pilgering annealing temperature. The strength fell off rapidly with increasing annealing temperature. The ultimate strength of the low tin Zr-1Nb-0.69Sn-0.11Fe alloy with slightly higher iron and oxygen contents in this study was found to be higher than Zr-1Nb-1Sn-0.1Fe alloy. The oxidation experiments in steam condition revealed that the corrosion resistance of low tin Zr-1Nb-0.69Sn-0.11Fe alloy was better than the Zr-1Nb-1Sn-0.1Fe alloy with a higher Sn content. The weight gain of low tin Zr-1Nb-0.69Sn-0.11Fe alloy tubes gradually increased with the increasing annealing temperature possibly due to the decreased Nb content in the matrix because of the formation of ${\beta}-Nb$ particles.

키워드

과제정보

연구 과제 주관 기관 : 연구재단

참고문헌

  1. ASTM manual on Zirconium and Hafnium ASTM special technical publication 639 J. H. Schemel.
  2. Erich Tenckhoff, Deformation mechanisms, texture, and anisotropy in Zirconium and Zircaloy, Special technical publication, STP 966.
  3. Zirconium alloy fuel clad tubing engineering guide, First edition December 1989, Sandvik Special Metals Corporation.
  4. E. Tenckhoff and P. L. Rittenhouse, Annealing textures in Zircaloy tubing, Oak Ridge national laboratory, Received 5 Sep. (1969).
  5. S. Y. Lee, K. T. Kim, and S. I. Hong, J. Nucl. Mater. 392, 63 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.045
  6. S. Ko, S. I. Hong, and K. T. Kim, J. Nucl. Mater. 404, 154 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.023
  7. Know-why technology on specifications II. Zirconium alloy, KNF, 2004.12.
  8. Jinyuan Yan, Crystallographic texture and creep anisotropy cold worked and recrystallized Zirlo, Department of nuclear engineering north carolina state university raleigh, NC 27695-7909, March (2005).
  9. Jean-Paul Mardon, Daniel Charquet, Jean Senevat, Optimization of PWR Behavior of Stress-Relieved Zircaloy-4 Cladding Tubes by Inspection Process, Zirconium in the Nuclear Industry: Tenth International Symposium, Jun. STP 1245 (1993).
  10. Takao konishi, Masahiro Honji, Tatsuhisa Kojima, and Hideaki Abe, Effect of Cold Reduction on Anisotropy of Zircaloy Tubing, Seventh International Symposium, Jun. STP 939 (1985).
  11. M. L. Picklesimer, Anisotropy in Zircaloy, Seventh International Symposium, Jun. STP 939 (1985).
  12. Nuclear Zirconium Alloy Market, Special Ux Consulting Report, Ux Consulting Nov. 2008.
  13. James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, and Steven B. Warner, Science and Design of Engineering Materials, Richard D. Irwin, Inc. (1995).
  14. George P. Sabol et al., Development of a Cladding Alloy for High Burnup, Zirconium in the Nuclear Industry: Eighth International Symposium, STP1023 (1993).
  15. Toshiya Kido et al., Quantitative Assessment of Irradiation Effect on Creep and Corrosion Properties of Zr-base Alloys. Zirconium in the Nuclear Industry: Thirteenth International Symposium, STS 1423 (1998).
  16. F. Garzarolli, H. Stehle, and E. Steinberg, Behavior and Properties of Zircaloys in Power Reactors, zirconium in the Nuclear Industry : Eleventh International Symposium, STP 1295 (1996).
  17. J. J. Kearns, Thermal Expansion and Preferred Orientation in Zircaloy, WAPD-TM-472 (1965).
  18. H. Inui, S. I. Hong, and C. Laird, Acta Metall. et Mater. 38, 2261 (1990). https://doi.org/10.1016/0956-7151(90)90093-V
  19. Y. C. Choi, S. Ko, K. I. Chang, N. C. Cho, and S. I. Hong, J. Nucl. Mater. 383, 270 (2009). https://doi.org/10.1016/j.jnucmat.2008.09.023
  20. K. I. Chang and S. I. Hong, J. Nucl. Mater. 373, 16 (2008). https://doi.org/10.1016/j.jnucmat.2007.04.045
  21. S. I. Hong, Mater. Sci. Eng. 79, 1 (1986). https://doi.org/10.1016/0025-5416(86)90380-0
  22. S. I. Hong, Mater. Sci. Eng. 120, 1 (1984).
  23. S. I. Hong, Mater. Sci. Eng. 91, 137 (1987). https://doi.org/10.1016/0025-5416(87)90291-6
  24. S. I. Hong, Mater. Sci. Eng. 76, 77 (1985). https://doi.org/10.1016/0025-5416(85)90082-5
  25. Microstructural and mechanical characterization of asreceived and annealed Zircaloy-4 claddings produced by various manufacturers, KNF (1996).
  26. W. Liu, Q. Li, B. Zhou, Q. Yan, and M. Yao, J. Nucl. Mater. 341, 97 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.007
  27. H. Jeong, H. G. Kim, and T. H. Kim, J. Nucl. Mater. 317, 1 (2003). https://doi.org/10.1016/S0022-3115(02)01676-8
  28. B. Cox, J. Nucl. Mater. 336, 331 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.029
  29. K. N. Choo, Y. H. Kang, S. I. Pyun, and V. F. Urbanic, J. Nucl. Mater. 209, 226 (1994). https://doi.org/10.1016/0022-3115(94)90256-9
  30. Y. H. Jeong, H. G. Kim, D. J. Kim, B. K. Choi, and J. H. Kim, J. Nucl. Mater. 323, 72 (2003).
  31. J. M. Kim, Y. H. Jeong, and Y. H. Jung, J. Nucl. Mater. 104, 145 (2000).
  32. M. H. Lee, Y. H. Jung, B. K. Choi, S. Y. Park, H. G. Kim, J. Y. Park, Y. H. Jeong, J. Kor. Inst. Met. & Mater. 47, 474 (2009).