Effect of Shading Level on the Induction of Inflorescence and Growth of Phalaenopsis Hybrid

차광 수준이 팔레놉시스의 화경 발생과 생육에 미치는 영향

  • Lee, Dong Soo (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yae, Byeong Woo (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Yong Beom (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Young Ran (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이동수 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 예병우 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이용범 (서울시립대학교 환경원예학과) ;
  • 이영란 (농촌진흥청 국립원예특작과학원 화훼과)
  • Received : 2010.11.02
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

This experiment was carried out to find an optimum shading level for the growth of root and shoot, and to find the effect of shading level after August on the induction and growth of inflorescence of Phalaenopsis hybrid. The shading levels were 50%, 60%, 70%, 80% and 90% of natural light($1200{\mu}molm^{-2}s^{-1})$. The $CO_2$ uptake, transpiration rate, carbohydrate content, fresh weight and dry weight of Phalaenopsis hybrid were higher at 50-60% level than the others. But, it was diminished when the shading level was increased from 70% to 90%. Inflorescence length, the number of inflorescence and flower per plant all increased under 50-60% shading level and the day needed for the flowering after treatment decreased. Especially, the induction of inflorescence was depressed and flowering is not occurred under 90% during experiment period. These results suggest that the optimal shading level for the growth of Phalaenopsis including inflorescence was founded to be 50-60% in the season of light intensity and amount of sunshine decrease after august.

본 실험은 여름철에 비해 상대적으로 광도가 감소되는 시기인 8월 이후부터 익년 3월까지 차광처리가 팔레놉시스의 잎과 뿌리의 생육 그리고 화경의 발생에 미치는 영향에 대하여 조사하였다. 차광처리는 자연광의 50%, 60%, 70%, 80%, 그리고 90% 수준이었다. 야간 $CO_2$의 흡수량과 증산량, 엽내 탄수화물함량, 생체중과 건물중 모두 50%와 60% 차광에서 높았으며 70%수준 이상에서는 차광이 증가할수록 감소하였다. 화경의 길이, 개체당 화경수와 소화수는 50%와 60% 차광에서 다른 처리보다 높았으며 개화소요일수도 짧았다. 특히, 90%수준에서는 화경의 발생이 현저하게 억제될 뿐만 아니라 실험기간 동안 개화는 이루어지지 않았다.

Keywords

References

  1. Chae, S.C., K.C. Son, and J.G. Yun. 1998. Photosynthetic pattern of Dendrobium nobile cultivars and their photosynthetic abilities as affected by temperature, light intensity and $CO_{2}$ concentration. J. Kor. Soc. Hort. Sci. 39:756-760.
  2. Challa, H. and A.H.C.M. Schapendonk. 1984. Quantification of effects of light reduction in greenhouses on yield. Acta Hort. 148:501-510.
  3. Endo, M. and I. Ikushima. 1989. Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant Cell Physiol. 30:43-47.
  4. Endo, M. and I. Ikushima. 1992. Change in concentration of sugars and organic acids in the long-lasting flower clusters of Phalaenopsis. Plant Cell Physiol. 33:7-12.
  5. Hisamatsu, T., Y. Sugiyama, S. Kubota, and M. Koshioka. 2001. Delaying anthesis by dark treatment in Phalaenopsis. J. Japan. Soc. Hort. Sci. 70:264-266. https://doi.org/10.2503/jjshs.70.264
  6. James, E.F., V. Holcombe, N.C. Rajapakse, and R.L. Desmond. 2005. The Effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649.
  7. Jo, D.K. and Y.H. Kang. 2010. A study on the solar radiation estimation of 16 areas in korea using cloud cover. Journal of the Korean Solar Energy Society. 30:15-21.
  8. Kataoka, K., K. Sumitomo, T. Fudano, and K. Kawase. 2004. Change in sugar content of Phalaenopsis leaves before floral transition. Scientia Horticulturae. 102:121-132. https://doi.org/10.1016/j.scienta.2003.12.006
  9. Kim, W.S. 2000. Dormancy induction and root-zone heating control in winter hydroponic production of cut roses for energy saving. Ph. D. Diss., The university of Seoul, Seoul.
  10. Kubota, S. and K, Yoneda. 1993. Effects of light intensity on development and nutritional status of Phalaenopsis. J. Japan. Soc. Hort. Sci. 62:173-179. https://doi.org/10.2503/jjshs.62.173
  11. Kubota, S. and K. Yoneda. 1995. Effect of light intensity preceding day/night temperature on the sensitivity of to Phalaenopsis flower. J. Japan. Soc. Hort. Sci. 62:595-600.
  12. Lee, H.W., S.G. Lee, and S.H. Lee. 2002. Relationship between total solar radiation and PPF, and transmittance in greenhouse at different weather conditions. Journal of Bio-Environment Control. 11:56-60.
  13. Lim, Y.H., M.H. Kim, M.S. Byun, and K.W. Kim. 2007. Effect of light intensity on growth and flowering after flower bud formation in perennial Korean native plants. Flower Res. J. 15:90-95.
  14. Lopez, R. and E.S. Runkle. 2005. Environmental physiology of growth and flowering of orchids. HortScience 40:1969-1973.
  15. Matthew, G. and E.S. Runkle. 2005. Vekst og blomstring: Effekter av døgnlig lysmengde hos Phalaenopsis I potte. Gartneryrket nr. 8:15-16.
  16. Ota, K., K. Morioka and Y, Yamamoto. 1991. Effects of leaf age, inflorescence, temperature, light intensity and moisture conditions on CAM photosynthesis in Phalaenopsis. J. Jpn. Soc. Hort. Sci. 60:125-132. https://doi.org/10.2503/jjshs.60.125
  17. Roberto, G.L. and E.S. Runkle. 2008. Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of new guinea impatiens and petunia. HortScience 43:2052-2059.
  18. Wang, Y.T. 1995. Phalaenopsis orchid light requirement during the induction of spiking. HortScience 30:59-61.
  19. Wang, Y.T. 1998. Deffering flowering of greenhouse-grown Phalaenopsis orchids by alternating dark and light. J. Amer. Soc. Hort. Sci. 123:56-60.