Morphological and Genetic Characterization of Caffeine-Rich and -Poor Tea Tree (Camellia sinensis L.) Lines

  • Kim, Yong-Duck (Institute of Hadong Green Tea) ;
  • Jeong, Mi-Jin (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.)) ;
  • Song, Hyun-Jin (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.)) ;
  • Yun, Seok-Rak (Hanbaek Forest Health & Protection Institute) ;
  • Heo, Chang-Mi (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.)) ;
  • Kim, Chang-Soo (Dept. of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Moon, Hyun-Shik (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.)) ;
  • Choi, Myung-Suk (Div. of Environ. Forest Sci., Gyeongsang National Univ. (Insti. of Agric. and Life Sci.))
  • Received : 2011.05.23
  • Accepted : 2011.10.28
  • Published : 2011.10.31

Abstract

In this study, 160 tea tree (Camellia sinensis L.) lines were classified by caffeine content using colorimetric methods. Among them, caffeine-rich lines (HR-78, HR-137, HR-82 and HR-123) and poor lines (HP-85, HP-88, HP-19, and HP-131) were selected. To know the difference in morphological and genetic characters between caffeine-rich and poor lines, we used leaf/shoot growth and RAPD methods. Cluster pattern of morphological characters (leaf width, leaf length, leaf area and shoot length) showed that shoot length was longer in caffein-rich lines than in -poor lines. In genetic analysis, amplified DNA bands having various sizes were detected in RAPD analysis where 30 random primers were used. However, the discriminated primer set that distinguish caffein-rich tree line from -poor lines was not found. These results can be used as the basic data to determine the morphological and genetic differences among caffein-rich and -poor lines.

Keywords

Acknowledgement

Supported by : Ministry for Food, Agriculture, Forestry and Fisheries

References

  1. Carrillo, J. A. and J. Benitez. 2000. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 39. 127-153. https://doi.org/10.2165/00003088-200039020-00004
  2. Crawford, D. J., D. W. Haines, M. B. Cosner, D. Wiens, and P. Lopez. 1994. Lactoris fernandeziana on the Juan Fernandez Islands: allozyme uniformity and field observation. Conserv. Biol. 8:277-280. https://doi.org/10.1046/j.1523-1739.1994.08010277.x
  3. Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecol. 26: 297-302. https://doi.org/10.2307/1932409
  4. Eden, T. 1958. The development of tea culture. Tea. pp. 1 - 4. Longman, London.
  5. Fritsch, D. S., S. M. Pizer, L. Yu, V. E. Johnson, and E. L. Chaney. 1993. Segmentation, of medical image objects using deformable shape loci, in Proceedings, IPMI '97: Information Processing in Medical Imaging. J. Duncan, G. Gindi, pp. 127-140. Eds.
  6. Islam, G. M. R., M. Iqbal, K. G. Quddus, and M. Y. Ali. 2005. Present status and future needs of tea industry in Bangladesh. Proc. Pakistan Acad. Sci. 42: 305-314.
  7. Kaundun, S. S. and Y. G. Park. 2002. Genetic structure of six Korean tea population as revealed by RAPD-PCR markers. Crop Sci. 42: 594-601. https://doi.org/10.2135/cropsci2002.0594
  8. Kim, Y. D., J. Y. Min, C. S. Karigar, G. W. Cheong, J. W. Kim, and M. S. Choi. 2007. Rapid screening and selection of low-caffeinecontentaining tea (Camellia sinensis) trees by a colorimetric method. Plant Breeding 126: 634-637. https://doi.org/10.1111/j.1439-0523.2006.01349.x
  9. Klimbunga, S., P. Ampayup, A. Tassanakajon, P. Jarayabhand, and W. Yoosukh. 2000. Development of species-specific markers of the tropical oyster (Crassostrea belcheri) in Thailand. Mar. Biotechnol. 2: 476-484.
  10. Lee, Y. H., K. W. Song, Y. M. Chung, and J. H. Choi. 2002. Analysis of genetic relationships among leaf characteristics in collected varieties of native tea by RAPD. J. Korea Tea Soc. 18: 99- 109.
  11. Laitinen, M. L., R. J. Tiitto, K. J. Heinonen, and M. Rousi. 2004. Variation in birch bark secondary chemistry between and within clones: Implications for herbivory. Oikos 104: 316-326. https://doi.org/10.1111/j.0030-1299.2004.12793.x
  12. Laitinen, M. L. and R. J. Tiitto, J. Tahvanainen, J. Heinonen. and M. Rousi. 2005. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment and ontogeny. J. of Chem. Ecol. 31: 697-717. https://doi.org/10.1007/s10886-005-3539-7
  13. Mondal, T. K., A. Bhattacharya, M. Laxmi kumaran, and P. S. Ahuja. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. : 76: 195-254. https://doi.org/10.1023/B:TICU.0000009254.87882.71
  14. Nichols-Oriens, C. M., R. S. Fritz and T. P. Clausen. The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: Clonal variation andsex-based differences. Biochem. Syst. Ecol. 21: 535-542.
  15. Oh, M. J. and B. H. Hong. 1999. Genetic relationship among Korean Native tea tree (Camellia sinensis L.) using RAPD markers. Korean J. Breeding. 27: 140-147.
  16. Park, Y. G., S. S. Kaundun, and A. Zhyvoloup. 2002. Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korea tea plantations. Genetic Res Crop Evol. 49: 159-165. https://doi.org/10.1023/A:1014706528972
  17. Pei, Y. L., Y. P. Zou, Z. Yin, X. O. Wang, Z. X. Zhang, and D. Y. Hong. 1995. Preliminary report of RAPD analysis in Paeonia suffruticosa subsp. Spontanea and P. rockii. Acta Phytotaxon Sin. 33: 350-356.
  18. Reichardt, P. B. 1981. Papyriferic acid: A triterpenoid from Alaskan paper birch. J. Organic. Chem. 46: 4576-4578. https://doi.org/10.1021/jo00335a054
  19. Su, Y. J., T. Wang, and C. Huang. 1999. RAPD analysis of different population of Dacydium pierrei. Acta Sci Nat Univ. Sun yat-seni. 38: 99-101.
  20. Wang, X. Q., Y. P. Zou, D. M. Zhang, and D. Y. Hong. 1996. RAPD analysis for genetic polymorphism in Cathaya argyrophylla. Sciencein China(C). 26: 437-441.
  21. Welsh, J., C. Petersen, and M. McClelland. 1991. Polymorphisms generated by arbitrarily by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 19: 303-306. https://doi.org/10.1093/nar/19.2.303