DOI QR코드

DOI QR Code

Liquid crystal alignment on patterned-alignment films

  • Lias, Jais Bin (Department of Electrical Engineering, Faculty of Engineering, Nagaoka University of Technology) ;
  • Oo, Thet Naing (Institute for Materials Chemistry and Engineering, Kyushu University) ;
  • Yazawa, Tomohiro (Department of Electrical Engineering, Faculty of Engineering, Nagaoka University of Technology) ;
  • Kimura, Munehiro (Department of Electrical Engineering, Faculty of Engineering, Nagaoka University of Technology) ;
  • Akahane, Tadashi (Department of Electrical Engineering, Faculty of Engineering, Nagaoka University of Technology)
  • Received : 2011.02.07
  • Accepted : 2011.02.21
  • Published : 2011.06.30

Abstract

To come up with a bistable liquid crystal (LC) device using unpolarized UV light, single-step laser patterning on a photoalignment layer using a photomask was proposed to achieve an equilibrium configuration of LC molecules in contact with a periodically patterned substrate. The patterns were formed by stripes of alternating random planar and homeotropic anchoring on a submicrometer scale in the order of $0.5{\mu}m$. Two possible configurations of bistable LC cells that can be obtained by combining a micropatterned surface formed with alternating random-planar- and homeotropic-alignment with planar- or homeotropic-alignment surfaces were proposed. The alignment properties of the two proposed models were investigated, along with the microscopic switching behavior of micropatterned nematic LC cells.

Keywords

References

  1. G.D. Boyd, J. Cheng, and P.D.T. Ngo, Appl. Phys. Lett. 36, 556 (1980). https://doi.org/10.1063/1.91578
  2. D.W. Berreman and W.R. Heffner, J. Appl. Phys. 52, 3032 (1981). https://doi.org/10.1063/1.329049
  3. J.H. Kim, M. Yoneya, and H. Yokoyama, Appl. Phys. Lett. 78, 3055 (2001). https://doi.org/10.1063/1.1371246
  4. M. O'Neill and S.M. Kelly, J. Phys. D 33, R67 (2000). https://doi.org/10.1088/0022-3727/33/10/201
  5. M. Yoneya, J.H. Kim, and H. Yokoyama, Appl. Phys. Lett. 80, 374 (2002). https://doi.org/10.1063/1.1435070
  6. B. Wen, J.H. Kim H. Yokoyama, and C. Rosenblatt, Phys. Rev. E 66, 41502 (2002). https://doi.org/10.1103/PhysRevE.66.041502
  7. T.Z. Qian and P. Sheng, Phys. Rev. Lett. 77, 4564 (1996). https://doi.org/10.1103/PhysRevLett.77.4564
  8. T.N. Oo, R. Bansho, N. Tanaka, M. Kimura, and T. Akahane, Jpn. J. Appl. Phys. 45, 4176 (2006). https://doi.org/10.1143/JJAP.45.4176
  9. T.N. Oo, M. Kimura, and T. Akahane, in Proc. of the 13th Int. Display Workshops (IDW '06), 2006, p. 99.
  10. T.N. Oo, Y. Yasu, M. Kimura, and T. Akahane, Abstr. of the Jpn. Liq. Cryst. Soc. Ann. Mtg., 2006, p. 287.
  11. T.N. Oo, Y. Yasu, M. Kimura, and T. Akahane, Phys. Rev. E 76, 31705-1 (2007). https://doi.org/10.1103/PhysRevE.76.031705
  12. T.N. Oo, M. Kimura, and T. Akahane, Adv. Tech. Mat. Mat. Proc. J. 10 (1), 9 (2008).
  13. T. Yazawa, T.N. Oo, M. Kimura, and T. Akahane, in Proc. of the 14th Int. Display Workshops (IDW '07) (2007), p. 289.
  14. S. Sato and M. Wada, Jpn. J. Appl. Phys. 11, 1566 (1980).
  15. J. Cheng and G. D. Boyd, Appl. Phys. Lett. 35, 444 (1979). https://doi.org/10.1063/1.91166
  16. N. Koshida and S. Kikui, Appl. Phys. Lett. 40, 541 (1982). https://doi.org/10.1063/1.93136
  17. T. Nose, S. Masuda, and S. Sato, Jpn. J. Appl. Phys. 30, 3450 (1991). https://doi.org/10.1143/JJAP.30.3450
  18. R. Yamaguchi and S. Sato, Jpn. J. Appl. Phys. 30, L616 (1991). https://doi.org/10.1143/JJAP.30.L616
  19. P. Vetter, Y. Ohmura, and T. Uchida, Jpn. J. Appl. Phys. 32, L1239 (1993). https://doi.org/10.1143/JJAP.32.L1239
  20. M. Kawasumi, N. Hasegawa, A. Usuki, and A. Okada, Liq. Cryst. 23, 769 (1996).
  21. R. Kravchuk and O.Yaroshchuk, Mol. Cryst. Liq. Cryst. 422, 385 (2004).
  22. I. Dozov and G. Durand, Liq. Cryst. Today 8, 1 (1998).
  23. C. J. Gerritsma, J.A. Geurst, and A.M.J. Sprujit, Phys. Lett. 43A, 356 (1973).
  24. S. Frunza, R. Moldovan, T. Beica, M. Giurgea, and D.N. Stoenescu, Europhys. Lett. 20, 407 (1992). https://doi.org/10.1209/0295-5075/20/5/005
  25. M. Nobili, R. Barberi, and G. Durand, J. Phys. II France 5, 531 (1995). https://doi.org/10.1051/jp2:1995148
  26. R. Karapinar, M. O'Neil, S.M. Kelly, A.W. Hall, and G.J. Owen, Springer-Verlag, ARI 51, 61 (1998). https://doi.org/10.1007/s007770050033
  27. N. Tanaka, M. Kimura, and T. Akahane, Jpn. J. Appl. Phys. 44, 587 (2005). https://doi.org/10.1143/JJAP.44.587
  28. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972). https://doi.org/10.1364/JOSA.62.000502

Cited by

  1. Two-dimensional high-speed and long-range tomography and profilometry using liquid-crystal Fabry-Perot resonator vol.54, pp.4, 2011, https://doi.org/10.1364/ao.54.000912
  2. Twisted-nematic-mode liquid crystal display with a DNA alignment layer vol.16, pp.3, 2011, https://doi.org/10.1080/15980316.2015.1072114