DOI QR코드

DOI QR Code

고무 제품 유한요소해석 결과의 신뢰 향상을 위한 물성치 연구

Material Properties for Reliability Improvement in the FEA Results for Rubber Parts

  • 백운철 (평화오일씰공업주식회사) ;
  • 조맹효 (서울대학교 기계항공공학부) ;
  • 황재석 (영남대학교 기계공학부)
  • 투고 : 2011.04.20
  • 심사 : 2011.09.03
  • 발행 : 2011.11.01

초록

자동차용 고무부품에 대한 유한요소 해석의 신뢰 향상을 위하여 고무소재 물성치에 대한 연구를 수행하였다. 마운트 설계를 위하여 수백 종의 고무 물성치를 모두 측정하는 것은 현실적으로 어렵다. 그래서 시험 값을 대신하는 순수전단 시험 데이타의 변환 방법을 제시하여 유효성을 확인하였다. 순수전단시험의 응력-변형 관계의 변환은 단순인장시험 데이터와 주 연신률의 함수로 정의한 푸아송의 비를 사용하였다. 카본 충진 고무의 변환 순수전단시험 데이터는 100%변형까지 시험 데이터와 상당히 유사하다. 단순인장시험 데이타와 함께, 순수전단시험의 변환 데이타와 시험 데이터를 각각 사용한 허브베어링 씰의 접촉력에 대한 유한요소해석 결과들은 시험 데이터와 거의 일치하였다. 해석에 사용된 재료상수는 Ogden 상수이다.

We studied the material properties for reliability improvement in finite element analysis results for a nitrile butadiene rubber hub-bearing seal and for a carbon-filled rubber mount used in a vehicle. It was difficult to measure the material properties of hundreds of types of rubber for the mount design. Thus, we suggested that the engineering stressstrain relations from pure shear test data could be synthesized by using simple tension data and Poisson's ratio. We defined Poisson's ratio by using a function of principal stretches to synthesize the stress-strain relations for a pure shear test. A transformation of the pure shear data was applied to the experimental values to obtain the predicted results when the strain approaches 100%. In the finite element analysis for the contact force of a hub-bearing seal, the strain results that used the transformation of the pure shear data and simple tension data almost corresponded to the experimental values. Ogden constants were used to analyze.

키워드

참고문헌

  1. Bechir, H., Chevalier, M. and Boufala, K., 2006, "Hyperelastic Constitutive Model for Rubber-Like Materials Based on the First Seth Strain Measures Invariant," Eoropean Journal of Mechanics A/Solids, Vol. 25, No. 1, pp. 110-124. https://doi.org/10.1016/j.euromechsol.2005.03.005
  2. Attard, M. M. and Hunt, G. W., 2004, "Hyperelastic Constitutive Modeling Under Finite Strain," International Journal of Solids and Structures, Vol. 41, No. 18-19, pp. 5327-5350. https://doi.org/10.1016/j.ijsolstr.2004.03.016
  3. Penn, R. W., 1970, "Volume Changes Accompanying the Extension of Rubber," Journal of Rheology, Vol. 14, No. 4, pp. 509-517. https://doi.org/10.1122/1.549176
  4. Kim, W. D., Kim, W. S., Kim, D. J., Woo, C. S. and Lee, H.J., 2004, "Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components," Transactions of the KSME A, Vol. 28, No. 6, pp. 848-859. https://doi.org/10.3795/KSME-A.2004.28.6.848
  5. Kim, H. Y., Kim, J. J., and Lee, N. K., 1999, "Deformation Analysis and Shape Optimization for Automotive Engine Mounting Rubber," Transactions of the KSAE, Vol. 7, No. 4, pp. 347-360.
  6. Beatty, M.F. and Stalnaker, D.O., 1986, "The Poisson Function of Finite Elasticity," Transactions of the ASME, Journal of. Applied Mechanics, Vol. 53, pp. 807-813. https://doi.org/10.1115/1.3171862
  7. Turner, D. M. and Brennan, M., 1990, "The Multiaxial Elastic Behaviour of Rubber," Plastics and Rubber Processing and Applications, Vol.14, pp. 183-188.
  8. Charlton, D. J. and Yang, J., 1994, "A Review of Methods to Characterize Rubber Elastic Behavior for Use in Finite Element Analysis," Rubber Chemistry and Technology, Vol. 67, No. 3, pp. 481-503. https://doi.org/10.5254/1.3538686
  9. Ogden, R. W., Saccomandi, G. and Sgura, I., 2004, "Fitting hyperelastic Models to Experimental Data," Computational Mechanics, Vol. 34, No. 6, pp. 484-502. https://doi.org/10.1007/s00466-004-0593-y
  10. James, A. G. and Green, A., 1975, "Strain Energy Functions of Rubber. . Characterization II of Field Vulcanizates," Journal of Applied Polymer Science, Vol. 19, pp. 2319-2330. https://doi.org/10.1002/app.1975.070190822
  11. Obata, Y., Kawabata, S. and Kawai, H., 1970, "Mechanical Properties of Natural Rubber Vulcanizates in Finite Deformation," Journal of Polymer Science, Part A-2: Polymer Physics, Vol. 8, pp. 903-919. https://doi.org/10.1002/pol.1970.160080607
  12. Tsuge, K., Arenz, R. and Landel, S. J., R., 1978, "Finite Deformation Behaviour of Elastomer: Dependence of Strain Energy Density on Degree of Cross," Rubber Chemistry and Technology, Vol. 51, No. 5, pp. 948-958. https://doi.org/10.5254/1.3535780
  13. Meinecke, E. and Taftaf, M., 1988, "Effect of Carbon Black on the Mechanical Properties of Elastomers," Rubber Chemistry and Technology, Vol. 61, No. 3, pp. 534-547. https://doi.org/10.5254/1.3536199

피인용 문헌

  1. Shape optimal design of a dust cover for ball joint of automotive steering system vol.37, pp.6, 2013, https://doi.org/10.5916/jkosme.2013.37.6.603
  2. Nonlinear Stress Analysis of Dust Covers for Ball Joint of Automotive Steering System vol.37, pp.10, 2013, https://doi.org/10.3795/KSME-A.2013.37.10.1297