• Title/Summary/Keyword: Carbon Filled Rubber

Search Result 85, Processing Time 0.024 seconds

Influence of Silane Coupling Agent on Properties of Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.285-291
    • /
    • 2000
  • Influence of silane coupling agent, bis-(3-(triethoxisilyl)-propyl)-tetrassulfide, on cure characteristics and bound rubber content of filled styrene-butadiene rubber (SBR) compounds and on physical properties of the vulcanizates was studied. Carbon black-filled and silica-filled compounds were compared. Content of the bound rubber increased with increased content of the silane coupling agent and this trend was shown more clearly in the silica-filled compounds. Optimum cure time of the carbon black-filled compound increased with increase of the silane content, while that of the silica-filled one decreased. Cure rate of the carbon black-filled compound became slower as the silane content increased while that of the silica-filled one became faster. By increasing the silane content, the minimum torque decreased and the delta torque increased. Physical properties of the silica-filled vulcanizate were found to be improved by adding the silane coupling agent. However, for the carbon black-filled vulcanizates, the tensile strength and tear resistance decreased with increase of the silane content. The differences between the carbon black-filled and silica-filled compounds were explained by difference in the reactivities of the fillers with the silane.

  • PDF

The Study on the Dependence of Cure Condition for Reinforcing Filler (보강성충전제의 가황조건 의존성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.75-82
    • /
    • 1998
  • The purpose of this experimental study was to investigate the effects of vulcanization condition on the properties of reinforced rubbers. Rubber reinforcing ability of carbon black was more efficient than other fillers, but tensile properties were not affected by vulcanization condition while vulcanization condition affected the physical properties of rubber compounds with silica and silane treated slica. It was found that silica and silane treated silica filled rubber compounds showed good dynamic properties, rebound, heat build-up, 0 and $60^{\circ}C$ tan $\delta$ compared with carbon black filled rubber compounds. Carbon black filled rubber compounds were higher than silica and silane treated silica filled rubber compounds in total crosslinking density by vulcanization condition. By analysis of crosslinking type, polysulfide crosslinking was the highest in the carbon black filled rubber compounds with decreasing the ratio of sulfur to accelerator, monosulfide crosslinking was the highest in the silane treated silica filled compounds with in-creasing the ratio of sulfur to accelerator.

  • PDF

Blowout of Rubber Vulcanizates: Influences of Cure Systems, Content of Carbon Black, and Organic Addities

  • 최성신;김익식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.174-178
    • /
    • 1998
  • Blowout of NR and SBR vulcanizates was studied using a microwave oven. Rubber vulcanizates with different contents of carbon black (0, 30, 50, 70 phr) and various cure systems (conventional, semi-EV, and EV) were prepared. Unfilled rubber vulcanizates did not exploded by irradiation of microwave, while carbon black-filled ones exploded within 10 min. A blowout time of the carbon black-filled rubber vulcanizate decreases with an increase of the content of carbon black in the vulcanizate. A blowout temperature of the organic additive-extracted vulcanizate is higher than that of the not-extracted one, but the extracted vulcanizate blows out faster than the not-extracted one. A blowout temperature of the overcured vulcanizate is higher than that of the undercured one with the same cure system. Temperatures of unfilled SBR vulcanizates heated by the microwave irradiation are lower than those of unfilled NR ones. The carbon black-filled SBR vulcanizates blow out at higher temperatures than the carbon black-filled NR ones. Blowout times of the carbon black-filled SBR vulcanizates are longer than those of the carbon black-filled NR ones.

The Rolling-Sliding Friction of Rubber and the Behavior of Contact Area

  • Uchiyama, Y.;Monden, N.;Miyao, T.;Iwai, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.189-190
    • /
    • 2002
  • Rolling-sliding friction was investigated for three SBR (styrene-butadiene rubber) specimens including silica-filled, HAF carbon black-filled, and SAF carbon black-filled SBR. When a rubber wheel was rolled against a glass disk, the coefficient of friction varied with the slip ratios. The coefficient of friction for the silica-tilled SBR showed the highest value of the rubber specimens examined under various slip ratios. The contact areas of silica-filled SBR were larger than those of the carbon black-filled SBRs, as indicated the modulus of the silica-filled SBR showing the lowest value. The contact area during rolling-sliding friction was always smaller than those during the static contact. The friction force at the unit contact area for the silica-filled SBR under braking and driving was higher than those of carbon black-filled SBRs.

  • PDF

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

Properties of Activated Carbon Blacks Filled SBR Rubber Composites

  • Ao, Geyou;Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Rubber reinforcing carbon black N330 was treated by physical activation under $CO_2$ to different degrees of burn-off. The mechanical properties indicating the reinforcement of SBR (Styrene-Butadiene Rubber) vulcanizates filled by activated carbon blacks, such as tensile strength, modulus at 300% strain and elongation at break were determined. During $CO_2$ activation of fresh carbon blacks, the development of microporous structure caused an increase of extremely large specific surface area and the porosity turned out to be an increasing function of the degree of burn-off. The tensile strength and modulus at 300% of activated carbon blacks filled rubber composites were improved at lower loading ratios of 20 and 30 phr, but decreased drastically after 30 phr, which is considered that it might be difficult to get a fully dispersed rubber mixture at higher loading ratios for fillers having very large specific surface areas. However, the Electromagnetic Interference (EMI) shielding effectiveness of SBR rubber composites having activated carbon black at 74% yield were improved at a large extent when compared to those having raw carbon black and increased significantly as a function of increasing loading ratio.

Preblending Effect of Biblends on Properties of the Carbon Black-Filled Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • A premixing effect for the properties of carbon black-filled rubber compounds was investigated using biblends of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR). Degree of mixing of the biblends was controlled by preblending time of 0.0, 2.5, and 5.0 min. Mooney viscosities of the compounds decreased by increasing the preblending time. Of three carbon black-filled compounds of NR/SBR, NR/BR, and SBR/BR compounds, only the SBR/BR blends showed a specific cure characteristics depending on the preblending time. For the bound rubber composition, the NR content was higher than SBR and BR. The difference in the rubber composition ratio of the bound rubber became smaller with increasing the preblending time. Physical properties of the vulcanizates such as hardness, modulus, tensile property, abrasion loss, and tans were also compared. Differences in properties of the compounds were discussed with miscibility of the dissimilar rubbers and degree of mixing.

  • PDF

Influence of Mastication en Properties of Carbon Black-Filled NR Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • The influence of mastication of natural rubber (NR) on properties of carbon black-filled NR compounds was studied. Variations of viscosities of the masticated NR and the carbon black-filled NR compound by heating were also investigated. The viscosities of the compounds decreased by increasing the mastication time of the raw rubber. The viscosities of the masticated NR and the compounds increased by increasing the heating time. This was explained by the combination reaction between functional groups in the rubber. The viscosity increment of the masticated rubber and the compounds by heating became larger with increased mastication time. Cure rate of the compound became faster by increasing the mastication time. Modulus of the vulcanizate made of the rubber masticated for a long time was higher than that of the vulcanizate made of the rubber masticated for a short time while elongation at break of the former was shorter than that of the latter. This was explained by the content of bound rubber and chain length of the rubber molecules.

  • PDF

Cure Characteristics of Carbon Block-Filled Rubber Compounds Composed of NR, SBR, and BR (NR, SBR, BR로 이루어진 고무배합물의 고무조성비에 따른 가황 특성)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 2000
  • Cure characteristics of carbon black-filled rubber compounds with different rubber composition were studied using a rheometer. The carbon black-filled rubber compounds with single, binary, and ternary rubber compositions of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR) were used. Delta-torques of the NR/BR- and SBR/BR-based compounds with a high BR content were higher than those of the single rubber-based compounds. For ternary rubber-based compounds, the delta-torques of the compounds were lower when the difference in the rubber content ratios was small than when it was big. Scorch and optimum cure times of the rubber compounds became shorter by increasing the content of NR in the compounds while those became longer by increasing the SBR content. Cure rates of the rubber compounds increased with a decrease of the SBR content in the rubber compounds. Reversion ratios decreased with an increase of the SBR content in the rubber compounds.

  • PDF