DOI QR코드

DOI QR Code

Optimal Surface Aeration Rate for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum Using Pichia stipitis

Pichia stipitis를 이용한 모자반 가수분해물로부터의 bioethanol 생산 시 최적 surface aeration rate

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Kim, Hye-Ji (Department of Biotechnology, Chungju National University) ;
  • Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • Received : 2011.05.26
  • Accepted : 2011.06.16
  • Published : 2011.08.30

Abstract

We investigated the optimal surface aeration rate during bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. It was observed that, when the working volume was 880 mL in 2.5-L lab-fermentor, the surface aeration rates of 30 to 100 mL/min were the optimal values for bioethanol production, in which this surface aeration rate corresponded to less than 0.05 (1/min) as the oxygen transfer rate coefficient ($k_La$). In addition, during repeated-batch operation was carried out, we examined whether those surface aeration rates were the optimal for bioethanol production. It was also observed that the surface aeration rates of 30 to 100 mL/min in the working volume of 880 mL were the optimal values in terms of the cumulative bioethanol producrion and bioethanol yield. On the basis of the oxygen transfer rate coefficient it is probable that those surface aeration rates will be applied to the large-scale bioethanol production from the hydrolysate of seaweed Sargassum sagamianum.

Keywords

Acknowledgement

Supported by : 한국해양연구원

References

  1. Rizzi, M., P. Erleman, N. A. Bui-Thanh, and H. Dellweg (1988) Xylose fermentation by yeast. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl. Microbiol. Biotechnol. 29: 148-154. https://doi.org/10.1007/BF00939299
  2. Rizzi, M., K. Harwart, P. Erlemann, N.-A. Bui-Thanh, and H. Dellweg (1989) Purification and properties of the $NAD^+$-xylitol-dehydrogenase from the yeast Pichia stipitis. J. Ferment. Bioeng. 67: 20-24. https://doi.org/10.1016/0922-338X(89)90080-9
  3. Jeffries, T. W. (2006) Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
  4. Ligthelm, M. E., B. A. Prior, and J. C. du Preez (1988) The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68. https://doi.org/10.1007/BF00250500
  5. Skoog, K. and B. Hahn-Hägerdal (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389-3394.
  6. Grootjen, D. R. J., R. G. J. M. van der Lans, and K. Ch. A. M. Luyben (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb. Technol. 12: 20-23. https://doi.org/10.1016/0141-0229(90)90174-O
  7. Watson, N. E., B. A. Prior, J. C. du Preez, and P. M. Lategan (1984) Oxygen requirements for D-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6: 447-450. https://doi.org/10.1016/0141-0229(84)90094-2
  8. Yeon, J.-H., H.-B. Seo, S.-H. Oh, W.-S. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.
  9. Yeon, J.-H., S.-E. Lee, W. Y. Choi, W.-S. Choi, I.-C. Kim, H.-Y. Lee, and K.-H. Jung (2011) Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21: 109-114. https://doi.org/10.4014/jmb.1008.08001
  10. Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
  11. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  12. Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, Y.-S. Jang, I.-C. Kim, and H.-Y. Lee (2009) Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
  13. Chaplin, M. F. and J. F. Kennedy (1986) Carbohydrate analysis; A practical approach, pp. 3. IRL Press, Oxford, UK.
  14. Robyt, J. F. and R. Mukerjea (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  15. Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung (2009) High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
  16. Adams, J. M., J. A. Gallagher, and I. S. Donnison (2009) Fermentation study on Saccharina latissimafor bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21: 569-574. https://doi.org/10.1007/s10811-008-9384-7
  17. Harun, R., M. K. Danquah, and G. M. Forde (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
  18. Horn, S. J., I. M. Aasen, and K. Ostgaard (2000) Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249-254. https://doi.org/10.1038/sj.jim.7000065
  19. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.

Cited by

  1. Immobilization of Yeast Pichia stipitis for Ethanol Production vol.22, pp.4, 2012, https://doi.org/10.5352/JLS.2012.22.4.508
  2. Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation vol.22, pp.1, 2011, https://doi.org/10.4014/jmb.1106.06019
  3. Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2011, https://doi.org/10.4014/jmb.1304.04014