Abstract
With increasing need for indexing of persons in a large video database, automatic indexing has been attracting great interest which takes advantage of automatic tagging instead of the time-consuming and costly manual tagging. However, automatic indexing approach should provide a degree of recognition proximity because it cannot identify the persons with accuracy of 100%. In this paper, we propose an efficient storage method for storing posting lists efficiently and a novel ranking technique of ordering relevant videos for efficient retrieval. Through experiment evaluations we have shown that our storage method exhibits good performance in compressing the posting list. We have also shown that the proposed ranking method is effective for finding relevant videos.
대용량 동영상을 대상으로 한 등장인물 색인에 대한 수요가 증가함에 따라, 많은 시간과 비용이 소요되는 수동 태깅의 단점을 보완할 수 있는 자동 태깅을 이용한 자동 색인이 연구되고 있다. 하지만, 자동 색인은 인물을 100% 정확하게 검출하지 못하므로 검출된 인물에 대해 정확도를 함께 표현해야 한다. 본 논문에서는 이러한 정보를 포스팅 리스트에 효율적으로 저장하는 방법과 등장인물의 검색시 관련 동영상들을 효율적으로 찾기 위한 순위 결정 방법을 제안한다. 실험을 통하여 제안하는 색인 정보 저장 방법이 포스팅 리스트의 압축에 효과적임을 입증하였다. 또한 제안한 순위 결정 방법이 관련 동영상을 찾는데 효과적임을 입증하였다.