DOI QR코드

DOI QR Code

Acceleration techniques for GPGPU-based Maximum Intensity Projection

GPGPU 환경에서 최대휘소투영 렌더링의 고속화 방법

  • 계희원 (한성대학교 정보시스템공학과) ;
  • 김준호 (한성대학교 정보시스템공학과)
  • Received : 2011.03.03
  • Accepted : 2011.07.12
  • Published : 2011.08.31

Abstract

MIP(Maximum Intensity Projection) is a volume rendering technique which is essential for the medical imaging system. MIP rendering based on the ray casting method produces high quality images but takes a long time. Our aim is improvement of the rendering speed using GPGPU(General-purpose computing on Graphic Process Unit) technique. In this paper, we present the ray casting algorithm based on CUDA(an acronym for Compute Unified Device Architecture) which is a programming language for GPGPU and we suggest new acceleration methods for CUDA. In detail, we propose the block based space leaping which skips unnecessary regions of volume data for CUDA, the bisection method which is a fast method to find a block edge, and the initial value estimation method which improves the probability of space leaping. Due to the proposed methods, we noticeably improve the rendering speed without image quality degradation.

최대휘소투영은 볼륨 렌더링의 한 기법으로, 의료영상을 판독하기 위해서 중요한 기능이다. 광선 투사법을 이용한 최대휘소투영 렌더링은 비교적 높은 화질의 영상을 생성하나 많은 연산을 요구한다. 본 연구는 그래픽 처리장치(GPU : Graphic Process Unit) 에 일반 연산을 적용하는 GPGPU(General-purpose computing on Graphic Process Unit) 기술을 이용하여 최대휘소투영 렌더링의 속도를 향상시키는 방법에 관한 연구를 수행한다. 본 논문에서는 GPGPU를 수행 할 수 있는 프로그래밍 언어인 CUDA(an acronym for Compute Unified Device Architecture)를 기반으로 고속 광선 투사법을 구현하며, CUDA 환경에 적함한 가속화 방법을 제안한다. 구체적으로, 블록 기반 공간 도약 기법을 적용하여 불필요한 부분을 도약하고, 이분 이동법을 통해 블록 경계면의 탐색을 고속으로 수행하며, 초기 값 추정 알고리즘을 이용하여 공간 도약 확률을 향상시킨다. 이를 통해 화질 손실 없이 최대휘소투영 렌더링의 가시화 속도를 크게 향상시킨다.

Keywords

References

  1. OpenGL, http://www.opengl.org/
  2. DirectX, http://msdn.microsoft.com/en-us/ directx/
  3. GPGPU.org, http://gpgpu.org/
  4. CUDA, http://www.developer.nvidia.com/
  5. M. Levoy, "Volume Rrendering Display of Surfaces from Volume Data," IEEE Computer Graphics and Application 1988, Vol.8, pp.29- 37, 1988. https://doi.org/10.1109/38.511
  6. R. Zirbes, "Scientific Visualization: Volume Surface Rendering," http://johnrichie.com/V2/richie/isosurface/volume.html
  7. V. Pekar, D. Hempel, G. Kiefer, M. Busch, and J. Weese, "Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware," Joint EUROGRAPHICS -IEEE TCVG Symposium on Visualization 2003, pp. 135-140, 2003.
  8. P. Lacroute and M. Levoy, "Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation," In Proceedings of ACM SIGGRAPH 1994, pp.451-457, 1994
  9. 계희원, "단일 명령 복수 데이터 연산과 순차적 메모리 참조를 이용한 효율적인 최대 휘소 투영 볼륨 가시화," 한국멀티미디어학회 논문지, 제 12권 4호, 2009.
  10. L. Fang, Y. Wang, B. Qiu, and Y. Qian, "Fast Maximum Intensity Projection Algorithm Using Shear Warp Factorization and Reduced Resampling," Magnetic Resonance in Medicine, Vol.47, pp.696-700, 2002. https://doi.org/10.1002/mrm.10114
  11. G. Kiefer, H. Lehmann, and J. Weese, "Fast Maximum Intensity Projections of Large Medical Data Sets by Exploiting Hierarchical Memory Architectures," IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, Vol.10, No.2, pp.385-394, 2006. https://doi.org/10.1109/TITB.2005.863871
  12. Benjamin Mora, David S. Ebert, "Low- Complexity Maximum Intensity Projection," ACM Transactions on Graphics, Vol.24, No.4, pp.1392-1416, 2005. https://doi.org/10.1145/1095878.1095886
  13. K.H. Kim and H.W. Park, "A Fast Progressive Method of Maximum Intensity Projection," Computerized Medical Imaging and Graphics, Vol.25, pp.433-441, 2001. https://doi.org/10.1016/S0895-6111(01)00003-9
  14. L. Mroz, H. Hauser, and E. Groller, "Interactive High-Quality Maximum Intensity Projection," EUROGRAPHICS 2000, Vol.19, No.3, pp.341-350, 2000.
  15. H. Kye and D.K. Jung, "Accelerated MIP Based on GPU Using Block Clipping and Occlusion Query," Computers and Graphics, Vol.32, No.3, pp.283-292, 2008. https://doi.org/10.1016/j.cag.2007.12.002
  16. L. Marsalek, A. Hauber, and P. Slusallek, "High-Speed Volume Ray Casting With CUDA," Interactive Ray Tracing, RT 2008. IEEE Symposium, pp.9-10, 2008.
  17. A. Weinlich, A. Benjamin, S. Holger, K. Markus, and H. Joachim, "Comparison of High-Speed Ray Casting on GPU Using CUDA and OpenGL," High-Performance and Hardware-Aware Computing, pp.25-30, 2008.
  18. 임종현, 신병석, "CUDA를 이용한 최대-최소 8진트리 생성 기법," 한국게임학회지 제9권 6호 pp.191-196, 2009.
  19. M. Levoy, "Efficient Ray Tracing of Volume Data," ACM Transactions on Graphics, Vol. 9, No.3, pp.245-261, 1990. https://doi.org/10.1145/78964.78965

Cited by

  1. Intermixing Surface and Volume Visualization Using Layered Depth Images vol.13, pp.2, 2013, https://doi.org/10.7583/JKGS.2013.13.2.99
  2. Efficient Non-photorealistic Rendering Technique in Single Images and Video vol.15, pp.8, 2012, https://doi.org/10.9717/kmms.2012.15.8.977
  3. Fast Ambient Occlusion Volume Rendering using Local Statistics vol.18, pp.2, 2015, https://doi.org/10.9717/kmms.2015.18.2.158
  4. 포인트 프리미티브를 이용한 실시간 볼륨 렌더링 기법 vol.14, pp.10, 2011, https://doi.org/10.9717/kmms.2011.14.10.1229
  5. GPGPU를 이용한 고속 의료 볼륨 영상의 압축 복원 vol.15, pp.5, 2011, https://doi.org/10.9717/kmms.2012.15.5.624
  6. 스마트 기기용 의료 콘텐츠를 위한 영상 가시화 시스템 vol.15, pp.10, 2012, https://doi.org/10.9717/kmms.2012.15.10.1264