• Title/Summary/Keyword: 최대휘소투영

Search Result 2, Processing Time 0.015 seconds

Acceleration techniques for GPGPU-based Maximum Intensity Projection (GPGPU 환경에서 최대휘소투영 렌더링의 고속화 방법)

  • Kye, Hee-Won;Kim, Jun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.981-991
    • /
    • 2011
  • MIP(Maximum Intensity Projection) is a volume rendering technique which is essential for the medical imaging system. MIP rendering based on the ray casting method produces high quality images but takes a long time. Our aim is improvement of the rendering speed using GPGPU(General-purpose computing on Graphic Process Unit) technique. In this paper, we present the ray casting algorithm based on CUDA(an acronym for Compute Unified Device Architecture) which is a programming language for GPGPU and we suggest new acceleration methods for CUDA. In detail, we propose the block based space leaping which skips unnecessary regions of volume data for CUDA, the bisection method which is a fast method to find a block edge, and the initial value estimation method which improves the probability of space leaping. Due to the proposed methods, we noticeably improve the rendering speed without image quality degradation.

Efficient Maximum Intensity Projection using SIMD Instruction and Streaming Memory Transfer (단일 명령 복수 데이터 연산과 순차적 메모리 참조를 이용한 효율적인 최대 휘소 투영 볼륨 가시화)

  • Kye, Hee-Won
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.512-520
    • /
    • 2009
  • Maximum intensity projection (MIP) is a volume rendering method which extracts maximum values along the viewing direction through volume data. It visualizes high-density structures, such as angio-graphic datasets so that it is frequently used in medical imaging systems. We have proposed an efficient two-step MIP acceleration method that uses the recent CPUs. First, we exploited SIMD instructions to reduce conditional branch instructions which take up a considerable part of whole rendering process, so that we improved rendering speed. Second, we proposed a new method, which accesses volume and image data successively by modifying the shear-warp rendering. This method improves memory access patterns so that cache misses are reduced. Using the current CPUs, our method improved the rendering speed by a factor of 7 than that of the shear-warp rendering.

  • PDF