수학적 연결성을 고려한 연속확률분포단원의 지도방안 연구

A Study on Teaching Continuous Probability Distribution in Terms of Mathematical Connection

  • 투고 : 2011.07.29
  • 심사 : 2011.09.09
  • 발행 : 2011.09.30

초록

학교수학에서 정적분과 치환적분법의 개념은 확률밀도함수의 도입, 연속확률변수의 기댓값, 정규분포의 표준화와 관련하여 수학적 연결성을 가진다. 그러나 개정교육과정의 '미적분과 통계 기본', '적분과 통계' 과목의 교육과정해설서와 검인정 교과서 및 익힘책에서 적분단원과 통계단원 사이의 수학적 연결성 고려가 어려움을 발견하였다. 본 연구는 학교수학에서 확률밀도함수의 도입, 연속확률변수의 기댓값, 정규분포의 표준화에 대하여 적분단원과의 수학적 연결성을 고려한 지도방안 마련을 목적으로 한다. 세개념에 대한 학생대상 실태조사와 개정교육과정의 교육과정해설서, 교과서, 익힘책, 그리고 국내 외 통계학(확률론) 도서(국내 13종, 국외 22종)의 내용을 비교하였다. 이를 바탕으로 세 개념에 대한 지도내용을 개발하여 실제 수업에 적용해보았고, 교육과정개정이나 교과서의 내용구성 변화에 대한 시사점을 발견하여 그 결과를 제언하였다.

In school mathematics, concepts of definite integral and integration by substitution have mathematical connection with introduction of probability density function, expectation of continuous random variable, and standardization of normal distribution. However, we have difficulty in finding mathematical connection between integration and continuous probability distribution in the curriculum manual, 13 kinds of 'Basic Calculus and Statistics' and 10 kinds of 'Integration and Statistics' authorized textbooks, and activity books applied to the revised curriculum. Therefore, the purpose of this study is to provide a teaching method connected with mathematical concepts of integral in regard to three concepts in continuous probability distribution chapter-introduction of probability density function, expectation of continuous random variable, and standardization of normal distribution. To find mathematical connection between these three concepts and integral, we analyze a survey of student, the revised curriculum manual, authorized textbooks, and activity books as well as 13 domestic and 22 international statistics (or probability) books. Developed teaching method was applied to actual classes after discussion with a professional group. Through these steps, we propose the result by making suggestions to revise curriculum or change the contents of textbook.

키워드