참고문헌
- Kim, C. H., Choi, B. O., Ryu, B. S. and Kim, D. S., "Gravure Offset Printing for Printed Electronics," J. of KSPE, Vol. 25, No. 5, pp. 96-102, 2008.
- Choi, B.-O., Kim, C. H. and Kim, D.-S., "Manufacturing Ultra-high-frequency Radio Frequency Identification Tag Antennas by Multilayer Printings," Proc. IMechE Part C: J. Mechanical Engineering Science, Vol. 224, No. 1, pp. 149-156, 2010. https://doi.org/10.1243/09544062JMES1610
- Kopolar, P., Tumikoski, M., Suhonen, R. and Maaninen, A., "Gravure Printed Organic Light Emitting Diodes for Lighting Applications," Thin Solid Films, Vol. 517, No. 19, pp. 5757-5762, 2009. https://doi.org/10.1016/j.tsf.2009.03.209
- Lija, K. E., B cklund, T. G., Lupo, D., Hassinen, T. and Joutsenoja, T., "Gravure Printed Organic Rectifying Diodes Operating at High Frequencies," Organic Electronics, Vol. 10, No. 5, pp. 1011-1014, 2009. https://doi.org/10.1016/j.orgel.2009.04.008
- Lee, T.-M., Noh, J.-H., Kim, I., Kim, D.-S. and Chun, S., "Reliability of Gravure Offset Printing under Various Printing Conditions," J. Applied Physics, Vol. 108, No. 10, Paper No. 102802, 2010.
- Padus, M., Hagberg, J. and Lepp vuori, S., "The Absorption Ink Transfer Mechanism of Gravure Offset Printing for Electronics Circuitry," IEEE Trans. Electronics Packaging Manufacturing, Vol. 25, No. 4, pp. 335-343, 2002. https://doi.org/10.1109/TEPM.2002.807728
- Pudas, M., Hagberg, J. and Lepp vuori, S., "Printing Parameters and Ink Components Affecting Ultra-fineline Gravure-offset Printing for Electronics Applications," Journal of the European Ceramic Society, Vol. 24, No. 10-11, pp. 2943-2950, 2004. https://doi.org/10.1016/j.jeurceramsoc.2003.11.011
- Pudas, M., Hagberg, J. and Lepp vuori, S., "Gravure Offset Printing of Polymer Inks for Conductors," Progress in Organic Coatings, Vol. 49, No. 4, pp. 324-335, 2004. https://doi.org/10.1016/j.porgcoat.2003.09.013
- Pudas, M., Hagberg, J. and Lepp vuori, S., "Rollertype Gravure Offset Printing of Conductive Inks for High-resolution Printing on Ceramic Substrates," International Journal of Electronics, Vol. 92, No. 5, pp. 251-269, 2005. https://doi.org/10.1080/00207210500102930
- Neff, J. E., "Investigation of the Effects of Process Parameters on Performance of Gravure Printed ITO on Flexible Substrates," M.S. Thesis, Mechanical Engineering, Georgia Institute of Technology, 2009.
- Lee, J.-W., Mun, K. K. and Yoo, Y. T., "A Comparative Study on Roll-to-roll Gravure Printing on PET and BOPP Webs with Aqueous Ink," Progress in Organic Coating, Vol. 64, No. 1, pp. 98-108, 2009. https://doi.org/10.1016/j.porgcoat.2008.07.011
- Lee, T.-M., Lee, S.-H., Noh, J.-H., Kim, D.-S. and Chun, S., "The Effect of Shear Force on Ink Transfer in Gravure Offset Printing," J. Micromech. Microeng., Vol. 20, No. 12, Paper No. 125026, 2010.
- Schwartz, L. W., "Numerical Modeling of Liquid Withdrawal from Gravure Cavities in Coating Operations; the Effect of Cell Pattern," J. Engineering Mathematics, Vol. 42, No. 3-4, pp. 243-253, 2002.
- Powell, C. A., Savage, M. D. and Guthrie, J. T., "Computational Simulation of the Printing of Newtonian Liquid from a Trapezoidal Cavity," Int. J. Numerical Methods for Heat & Fluid Flow, Vol. 12, No. 4, pp. 338-355, 2002. https://doi.org/10.1108/09615530210433251
- Yin, X. and Kumar, S., "Lubrication Flow Between a Cavity and a Flexible Wall," Phys. Fluids, Vol. 17, No. 6, Paper No. 063101, 2005.
- Yin, X. and Kumar, S., "Two-dimensional Simulations of Flow near a Cavity and a Flexible Solid Boundary," Phys. Fluids, Vol. 18, No. 6, Paper No. 063103, 2006.
- Hoda, N. and Kumar, S., "Boundary Integral Simulations of Liquid Emptying from a Model Gravure Cell," Phys. Fluids, Vol. 20, No. 9, Paper No. 092106, 2008.
- Dodds, S., Carvalho, M. S. and Kumar, S., "Stretching and Slipping of Liquid Bridges near Plates and Cavities," Phys. Fluids, Vol. 21, No. 9, Paper No. 092103, 2009.
- Huang, W.-X., Lee, S.-H., Sung, H. J., Lee, T.-M. and Kim, D.-S., "Simulation of Liquid Transfer between Separating Walls for Modeling Micro-gravure-offset Printing," Int. J. Heat & Fluid Flow, Vol. 29, No. 5, pp. 1436-1446, 2008. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.002
- Lee, S. and Na, Y., "Effect of Roll Patterns on the Ink Transfer in R2R Printing Process," Int. J. Precision Engineering and Manufacturing, Vol. 10, No. 5, pp. 120-130, 2009.
- Ahmed, D. H., Sung, H. J. and Kim, D.-S., "Simulation of non-Newtonian Ink Transfer between Two Separating Plates for Gravure-offset Printing," Int. J. Heat & Fluid Flow, Vol. 32, No. 1, pp. 298-307, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2010.06.011
- Ghadri, F., Ahmed, D. H., Sung, H. J. and Shirani, E., "Non-Newtonian Ink Transfer in Gravure-offset Printing," Int. J. Heat & Fluid Flow, Vol. 32, No. 1, pp. 308-317, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2010.09.004
- Bhat, P. P., Basaran, O. A. and Pasquali, M., "Dynamics of Viscoelastic Liquid Filaments: Low Capillary Number Flows," J. Non-Newtonian Fluid Mech., Vol. 150, No. 2-3, pp. 211-225, 2008. https://doi.org/10.1016/j.jnnfm.2007.10.021
- McKinley, G. H. and Sridhar, T., "Filament-Stretching Rheometry of Complex Fluids," Annu. Rev. Fluid Mech., Vol. 34, No. 1, pp. 375-415, 2002. https://doi.org/10.1146/annurev.fluid.34.083001.125207
- Notz, P. K. and Basaran, O., "Dynamics and Breakup of a Contracting Liquid Filament," J. Fluid Mech., Vol. 512, pp. 223-256, 2004.
- Pearson, G. and Middleman, S., "Elongational Flow Behavior of Viscoelastic Liquids: Modelling Bubble Dynamics with Viscoelastic Constitutive Relations," Rheol. Acta, Vol. 17, No. 5, pp. 500-510, 1978. https://doi.org/10.1007/BF01534277
- Rodd, L. E., Scott, T., Cooper-White, J. J. and McKinley, G. H., "Capillary Break-up Rheometry of Low-Viscosity Elastic Fluids," Applied Rheology, Vol. 15, No. 1, pp. 12-27, 2005.
- Sizaire, R. and Legat, V., "Finite Element Simulation of a Filament Stretching Extensional Rheometer," J. Non-Newtonian Fluid Mech., Vol. 71, No. 1-2, pp. 89-107, 1997. https://doi.org/10.1016/S0377-0257(97)00013-X
- Kim, K., Kim, C. H., Kim. H.-Y. and Kim, D. -S., "Effects of Blanket Roller Deformation on Printing Qualities in Gravure-Offset Printing Method," Japanese Journal of Applied Physics, Vol. 49, No. 5, Paper No. 05EC04, 2010.
- Yin, X., "Visualization and Modeling of Flow inside Gravure Cells and Grooves," Ph.D. Dissertation, Chemical Engineering, University of Minnesota, 2005.
- Yin, X. and Kumar, S., "Flow Visualization of the Liquid-emptying Process in Scaled-up Gravure Grooves and Cells," Chem. Eng. Sci., Vol. 61, No. 4, pp. 1146-1156, 2006. https://doi.org/10.1016/j.ces.2005.07.039
- Kang, H. W., Sung, H. J., Lee, T.-M., Kim, D.-S. and Kim, C.-J., "Liquid Transfer between Two Separating Plates from Micro-gravure-offset Printing," J. Micromech. Microeng., Vol. 19, No. 1, Paper No. 015025, 2009.
- Dodds, S., Carvalho, M. S. and Kumar, S., "Stretching Liquid Bridges with Bubbles: The Effect of Air Bubbles on Liquid Transfer," Langmuir, Vol. 27, No. 5, pp. 1556-1559, 2011. https://doi.org/10.1021/la104369z