DOI QR코드

DOI QR Code

Expander graphs based on 60/102 NBCA and its application

60/102 NBCA에 기반을 둔 확장그래프들과 그 응용

  • Received : 2011.05.03
  • Accepted : 2011.06.22
  • Published : 2011.09.30

Abstract

Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et. al introduced a method to generate a family of expander graphs based on nongroup two predecessor single attractor CA(Cellular Automata). In this paper we propose a method to generate a family of expander graphs based on 60/102 Null boundary CA(NBCA) which is a group CA. The spectral gap generated by our method is larger than that of Mukhopadhyay et. al [12]. As an application we give an algorithm which generate one-way functions whose security lies on the combinatorial properties of our expander graphs. the one-way function using d-regular graph generated by the 60/102 NBCA is based on the Goldreich's construction [5].

확장그래프는 통신망의 설계와 분석에 유용하다. Mukhopadhyay 등은 nongroup two predecessor single attractor CA(Cellular Automata; 이하 CA)에 기반을 둔 한 부류의 확장그래프들을 생성하는 방법을 소개했다. 본 논문에서는 group CA인 60/102 Null Boundary CA(NBCA)에 기반을 둔 한 부류의 확장그래프들을 생성하는 방법을 제안한다. 본 논문에서 제안된 방법에 의해 생성된 spectral gap은 Mukhopadhyay 등[12]에 의해 생성된 spectral gap보다 크다. 제안된 확장그래프들의 조합적 성질에 기반을 둔 일방향 함수들을 생성하는 알고리즘을 제안한다. 60/102 NBCA에 의해 생성된 d-정규 그래프를 이용한 일방향함수는 Goldreich의 방법[5]에 기반을 두고 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M.S. Pinker, On the complexity of a concentrator, In 7th International Telegraffic Conference, 1973.
  2. S. Hoory, N. Lindal, and A. Wigderson, Expander graphs and their applications, Bull. AMS, Vol. 43, pp. 439-561, 2006. https://doi.org/10.1090/S0273-0979-06-01126-8
  3. D. Peleg and E. Upfal, Constructing disjoint paths on expander graphs, Combinatorica, Vol. 9, pp. 289-313, 1989. https://doi.org/10.1007/BF02125897
  4. M. Sipser and D. Spielman, Expander codes, IEEE Transactions on Information Theory, Vol. 42, pp. 1710-1722, 1996. https://doi.org/10.1109/18.556667
  5. O. Goldreich, Candidate one-way functions based on expander graphs, Cryptology ePrint Archieve, Report 200/063, pp. 1-9, 2000.
  6. W. Diffie and M. Hellman, New directions in cryptography, in IEEE Transaction on Information Theory, Vol. 22, pp. 644-654, 1976. https://doi.org/10.1109/TIT.1976.1055638
  7. S.J. Cho, U.S. Choi, H.D. Kim, and Y.H. Hwang, Analysis of complemented CA derived from linear hybrid group CA, Computers and Mathematics with Applications, Vol. 53, pp. 54-63, 2007. https://doi.org/10.1016/j.camwa.2006.04.027
  8. P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi, and S. Chattopadhyay, Additive Cellular Automata Theory and its Applications Vol. 1, IEEE Computer Society Press, 1997.
  9. S.J. Cho, U.S. Choi, H.D. Kim, Y.H. Hwang, J.G. Kim, and S.H. Heo, New synthesis of one-dimensional 90/150 linear hybrid group cellular automata, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, pp. 1720-1724, 2007. https://doi.org/10.1109/TCAD.2007.895784
  10. M.A. Nielsen, Introduction to expander graphs, www.ginfo.org/people/nielsen/blog/archive/notes/expander-graphs.pdf, 2005.
  11. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In Problems in analysis (Papers dedicated to Solomon Bochner, 1969, pp. 195-199), Princeton Univ. Press, Princeton, N.J., 1970.
  12. D. Mukhopadhyay and D.R. Chowdhury, Generation of expander graphs using cellular automata and its applications to cryptography, ACRI 2006, LNCS Vol. 4173, pp. 636-645, 2006.