DOI QR코드

DOI QR Code

Influence of Reinforcing Systems on Thermal Aging Behaviors of NR Composites

충전 시스템이 NR 복합체의 열노화 거동에 미치는 영향

  • Received : 2011.05.16
  • Accepted : 2011.06.08
  • Published : 2011.09.30

Abstract

Five natural rubber (NR) composites with different reinforcing systems of unfilled, carbon black, carbon black with silane coupling agent, silica, and silica with silane coupling agent were thermally aged and change of the crosslink densities by the accelerated thermal aging was investigated. The crosslink densities on the whole increased as the aging time elapsed irrespective of the reinforcing systems. The crosslink density changes became noticeable by increasing the aging temperature. For carbon black-filled composites, the silane coupling agent made the crosslink density change to be increased. For silica-filled composites, however, the silane coupling agent made the crosslink density increment reduced at 60 and $70^{\circ}C$ and it hardly affect the degree of the crosslink density change at 80 and $90^{\circ}C$. The activation energies for the crosslink density changes of the carbon black-filled samples increased continuously in a logarithmic fashion, whereas that of the silica-filled one showed a quasi-steady state ranges at aging times of 30-150 days. The activation energy of the unfilled sample increased exponentially with the aging time. The experimental results were explained with sulfur donation from the silane coupling agent, surface modification of the filler by the silane coupling agent, adsorption of curative residues on the silica surface, and release of the adsorbed curative residues.

비보강, 카본블랙, 카본블랙과 실란커플링제, 실리카, 실리카와 실란커플링제 등 5가지의 다른 충전 시스템을 갖는 NR 복합체를 열노화시켰으며, 가속 열노화에 의한 가교밀도 변화를 연구하였다. 가교밀도는 충전 시스템과 관계없이 노화 시간이 경과함에 따라 증가하였다. 노화 온도가 높아질수록 가교밀도는 눈에 띄게 변하였다. 카본블랙으 로 보강된 NR 복합체의 경우, 실란커플링제는 가교밀도를 증가시켰다. 하지만 실리카로 보강된 NR 복합체의 경우에는 $60^{\circ}C$$70^{\circ}C$ 노화에서는 가교밀도 증가분이 감소하였으며, $80^{\circ}C$$90^{\circ}C$에서는 거의 영향을 주지 않았다. 카본블랙으로 보강된 NR 복합체의 가교밀도 변화에 대한 활성화 에너지는 로그 함수 형태로 지속적으로 증가한 반면, 실리카로 보강된 NR 복합체의 경우에는 노화 시간 30-150일 구간에서는 거의 변화가 없었다. 비보강 시험편의 활성화 에너지 는 노화 시간에 따라 지수 함수 형태로 증가하였다. 실험 결과는 실란커플링제로부터의 황 제공, 실란커플링제에 의한 충전제의 표면 개질, 실리카 표면에서의 가교제 잔류물의 흡착, 그리고 흡착된 가교제 잔류물의 방출 등으로 설명하였다.

Keywords

References

  1. G. R. Cotton, "Mixing of carbon black with rubber - I. Measurement of dispersion rate by changes in mixing torque", Rubber Chem. Technol., 57, 118 (1984). https://doi.org/10.5254/1.3535988
  2. J. S. Kim, J. H. Lee, W. S. Jung, J. W. Bae, H. C. Park, and D. P. Kang, "Effects of reinforcing fillers on far-infrared vulcanization characteristics of EPDM", Elast. Compos., 44, 47 (2009).
  3. T. C. Gruber and C. R. Herd, "Anisometry measurements in carbon black aggregate populations", Rubber Chem. Technol., 70, 727 (1997). https://doi.org/10.5254/1.3538456
  4. S.-S. Choi and S.-H. Ha, " Influence of the swelling temperature and acrylonitrile content of NBR on the water swelling behaviors of silica-filled NBR vulcanizates", J. Ind. Eng. Chem., 15, 167 (2009). https://doi.org/10.1016/j.jiec.2008.09.016
  5. H. Raab, J. Fröhlich, and D. Göritz, "Surface topography and its Influence on the activity of carbon black", Kautsch. Gummi Kunstst., 53, 137 (2000).
  6. K. J. Kim, "Bifunctional silane (TESPD) effects on silica containing elastomer compound Part I: Natural rubber (NR)", Elast. Compos., 44, 134 (2009).
  7. S. Wolff and M.-J. Wang, "Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement", Rubber Chem. Technol., 65, 329 (1992). https://doi.org/10.5254/1.3538615
  8. A. I. Medalia, "Effect of carbon black on dynamic properties of rubber vulcanizates", Rubber Chem. Technol., 51, 437 (1978). https://doi.org/10.5254/1.3535748
  9. W. M. Hess and V. E. Chirico, "Elastomer blend properties EM dash influence of carbon black type and location", Rubber Chem. Technol., 50, 301 (1977). https://doi.org/10.5254/1.3535145
  10. Y. Bomal, S. Touzet, R. Barruel, Ph. Cochet, and B. Dejean, "Developments in silica usage for decreased tyre rolling resistance", Kautsch. Gummi Kunstst., 50, 434 (1997).
  11. C. H. Chen, J. L. Koenig, J. R. Shelton, and E. A. Collins, "The influence of carbon black on the reversion process in sulfur-accelerated vulcanization of natural rubber", Rubber Chem. Technol., 55, 103 (1982). https://doi.org/10.5254/1.3535860
  12. E. F. Devlin, "Effect of cure variables on cis/trans isomerization in carbon black-reinforced cis-1,4-polybutadiene", Rubber Chem. Technol., 59, 666 (1986). https://doi.org/10.5254/1.3538227
  13. S.-S. Choi, "Influence of filler composition ratio on properties of both silica and carbon black-filled styrene-butadiene rubber compounds", Elastomer, 36, 37 (2001).
  14. S.-S. Choi, "Influence of silane coupling agent on properties of filled styrene-butadiene rubber compounds", Kor. Polym. J., 8, 285 (2000).
  15. A. S. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, "Effect of bis(3-triethoxysilyl propyl)tetrasulfide on silica reinforcement of styrene-butadiene rubber", Rubber Chem. Technol., 71, 289 (1998). https://doi.org/10.5254/1.3538485
  16. S.-S. Choi, K.-J. Hwang, and B.-T. Kim, "Influence of bound polymer on cure characteristics of natural rubber compounds reinforced with different types of carbon blacks", J. Appl. Polym. Sci., 98, 2282 (2005). https://doi.org/10.1002/app.22287
  17. Y.-C. Ou, Z.-Z. Yu, A. Vidal, and J. B. Donnet, "Effects of alkylation of silica filler on rubber reinforcement", Rubber Chem. Technol., 67, 834 (1994). https://doi.org/10.5254/1.3538714
  18. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, "Study on dispersion morphology of silica in rubber", Rubber Chem. Technol., 67, 693 (1994). https://doi.org/10.5254/1.3538704
  19. R. P. Brown and T. Butler, Natural ageing of rubber. Changes in physical properties over 40 years, RAPRA Technology Ltd. (2000).
  20. R. P. Brown, T. Butler, and S. W. Hawley, Ageing of rubber. Accelerated heat ageing test results, RAPRA Technology Ltd. (2001).
  21. N. J. Morrison and M. Porter, "Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization", Rubber Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  22. C. H. Chen, J. L. Koenig, J. R. Shelton, and E. A. Collins, "Characterization of the reversion process in accelerated sulfur curing of natural rubber", Rubber Chem. Technol., 54, 734 (1981). https://doi.org/10.5254/1.3535831
  23. S.-S. Choi, "Bond dissociation of sulfur crosslinks in IR and BR vulcanizates using semi-empirical calculations", Kor. Polym. J., 5, 39 (1997).
  24. R. W. Layer, "Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization", Rubber Chem. Technol., 65, 211 (1992). https://doi.org/10.5254/1.3538601
  25. S.-S. Choi, "Influence of silica content on migration of antidegradants to the surface in NR vulcanizates", J. Appl. Poly. Sci., 68, 1821 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1821::AID-APP13>3.0.CO;2-X
  26. S.-S. Choi, "Migration of antidegradants to the surface in NR vulcanizates containing both silica and carbon black", Kor. Polym. J., 6, 256 (1998).
  27. S.-S. Choi, J.-C. Kim, and C.-S. Woo, "Accelerated thermal aging behaviors of EPDM and NBR vulcanizates", Bull. Kor. Chem. Soc., 27, 936 (2006). https://doi.org/10.5012/bkcs.2006.27.6.936