DOI QR코드

DOI QR Code

폴리아크릴레이트/카본나노튜브 복합체 시트의 열적.전기적 성질

Thermal and Electrical Properties of Polyacrylate/Carbon Nanotube Composite Sheet

  • 최아영 (금오공과대학교 고분자공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과)
  • Choi, A.Y. (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yoon, K.H. (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2011.07.22
  • 심사 : 2011.08.04
  • 발행 : 2011.09.30

초록

본 연구에서는 폴리아크릴레이트/카본나노튜브 복합체를 제조하고 전극재료로서의 응용가능성을 알아보았다. 복합체의 전기전도도는 MWNT의 함량에 따라 증가하였고 시트의 두께가 두꺼워 질수록 증가하였으며 MWNT 50 wt% 함량에서 0.36 ${\Omega}$/sq의 표면저항값이 얻어졌다. 복합체의 열분해온도는 폴리아크릴레이트에 비해 MWNT의 함량에 따라 증가하였으며 50 wt%의 MWNT 복합체 함량에서 $15^{\circ}C$의 증가가 관찰되었다. 복합체의 저장탄성율의 경우도 MWNT의 함량에 따라 증가하였고 특히, 고온에서의 증가가 뚜렷하였다. 폴리아크릴레이트의 열팽창거동은 온도의 증가에 따라 $20^{\circ}C$ 부근부터 수축이 된 반면, 복합체의 경우는 수축되지 않고 약간 팽창하는 경향을 보였다. 복합체의 형태학을 관찰한 결과 폴리아크릴레이트 내에서 MWNT의 분산이 잘 이루어 진 것을 알 수 있었다.

The polyacrylate/multi-walled carbon nanotube (MWNT) composites were prepared and investigated for the application as a counter electrode in solar cell. The electrical conductivity of the composites was increased with increasing MWNT content and with the thickness of the sheet. The surface resistivity value of the composite at 50 wt% loading of MWNT was 0.36 ${\Omega}$/sq. The thermal decomposition temperature of the composites was also increased with the MWNT contents, and the increase of $15^{\circ}C$ was observed at the composite of polyacrylate/MWNT (50/50, w/w). The increase of storage modulus of the composites was observed, especially at the higher temperature compared to polyacrylate. The dimensional change of polyacrylate decreased over $20^{\circ}C$, but that of the composite increased linearly with the temperature. The morphology of the composites stands for the good dispersion of MWNT into the polyacrylate matrix.

키워드

참고문헌

  1. K.T. Lau and D. Hui, "Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structure", Carbon, 40, 1597 (2002). https://doi.org/10.1016/S0008-6223(02)00133-1
  2. Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, "Plasma activation of carbon nanotubes for chemical modification", J. Phys. Chem. B, 105, 618 (2001). https://doi.org/10.1021/jp003385g
  3. M. Wang, K.P. Pramoda, and S.H. Goh, "Enhancement of interfacial adhesion and dynamic mechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly(ethylene oxide)", Carbon, 44, 613 (2006). https://doi.org/10.1016/j.carbon.2005.10.001
  4. F.H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, "Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites", Chem. Phys. Lett., 370, 820 (2003). https://doi.org/10.1016/S0009-2614(03)00187-8
  5. C. Zhao, G. Hu, R. Justice, D.W. Schaefer, S. Zhang, and C.C. Han, "Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization", Polymer, 46, 5125 (2005). https://doi.org/10.1016/j.polymer.2005.04.065
  6. B.K. Zhu, S.H. Xie, Z.K. Xu, and Y.Y. Xu, "Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites", Compos. Sci. Technol., 66, 584 (2006).
  7. D.H. Shin, K.H. Yoon, O.H. Kwon, B.G. Min, and C.I. Hwang, "Surface resistivity and rheological behaviors of carboxylated multiwall carbon nanotube-filled PET composite film", J. Appl. Polym. Sci., 99, 900 (2006). https://doi.org/10.1002/app.21982
  8. S.H. Jin, Y.B. Park, and K.H. Yoon, "Rheological and mechanical properties of surface modified multi-walled carbon nanotube- filled PET composite", Compos. Sci. Technol., 67, 3434 (2007). https://doi.org/10.1016/j.compscitech.2007.03.013
  9. S.H. Jin, K.H. Yoon, Y.B. Park, and D.S. Bang, "Properties of surface-modified multiwalled carbon nanotube filled poly(ethylene terephthalate) composite films", J. Appl. Polym. Sci., 107, 1163 (2008). https://doi.org/10.1002/app.27153
  10. M.K. Seo, J.R. Lee, and S.J. Park, "Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes", Mater. Sci. Eng. A, 404, 79 (2005). https://doi.org/10.1016/j.msea.2005.05.065
  11. W. Leelapornpisit, M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, J. Denault, and B. Simard, "Effect of carbon nanotubes on the crystallization and properties of polypropylene", J. Polym. Sci. Part B Polym. Phys., 43, 2445 (2005). https://doi.org/10.1002/polb.20527
  12. M.K. Seo and S.J. Park, "Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites", Chem. Phys. Lett., 395, 44 (2004). https://doi.org/10.1016/j.cplett.2004.07.047