Abstract
Recently, researches are studied in developing efficient techniques for accessing, querying, and storing XML documents which are frequently used in the Internet. In this paper, we propose a new method to cluster XML documents efficiently. We use a K-means algorithm with a Principal Component Analysis(PCA) to cluster XML documents after they are represented by vectors in the feature vector space by transferring them as names and levels of the elements of the corresponding trees. The experiment shows that our proposed method has a good result.
최근 들어 인터넷에서 많이 사용되는 XML 문서들을 효율적으로 접근, 질의, 저장하는 방법들이 연구된다. 본 논문은 XML 문서들을 효율적으로 군집화 하는 새로운 기법을 제안한다. XML 문서를 대응하는 트리 구조의 원소들의 이름과 레벨로 표현하여 특징 벡터 공간상의 벡터로 나타내고 주성분 분석을 통한 k 평균 알고리즘 기법을 사용하여 군집화를 시도한다. 실험 결과를 통하여 제안하는 기법이 좋은 결과를 얻을 수 있음을 보였다.