DOI QR코드

DOI QR Code

소셜네트워크 기반의 콘텐츠 추천 방법

Contents Recommendation Method Based on Social Network

  • ;
  • 손종수 (고려대학교 컴퓨터정보학과) ;
  • 정인정 (고려대학교 컴퓨터정보학과)
  • 투고 : 2011.04.01
  • 심사 : 2011.05.17
  • 발행 : 2011.10.31

초록

최근 웹 및 웹 콘텐츠의 양이 폭발적으로 증가함에 따라서 콘텐츠 추천 시스템(CRS, Contents Recommendation System)은 최근 중요한 이슈로 대두되었다. 이에 따라, 콘텐츠 추천 시스템에 대한 콘텐츠 추천 방법(CRM, Contents Recommendation Method)이 꾸준히 연구 및 소개되어 왔다. 그러나 전통적인 CRM들은 콘텐츠 생성자의 위상이 중요하게 여겨지는 웹 2.0 환경에서 활용하는데 부족함이 있다. 본 논문에서는 연결 정도 중심성 분석(Degree of centrality) 및 TF-IDF를 활용하여 양질의 콘텐츠를 추천하는 방법을 제안한다. 이를 위하여 본 논문에서는 RSS와 FOAF를 수집하여 TF-IDF와 연결 정도 중심성을 각각 분석한다. 그리고 분석된 두 값을 이용하여 콘텐츠를 추천한다. 본 논문에서 제안한 방법을 검증하기 위하여 우리는 시스템을 구현하였으며 콘텐츠 추천 결과를 보인다. 본 논문에서 제안한 방법을 사용하면 입력된 질의어에 대해 사용자와 콘텐츠의 관계를 분석하고 이를 통해 적절한 콘텐츠를 추출할 수 있다. 그리고 본 논문에서 제안한 방법을 통해 구축한 시스템은 전통적인 콘텐츠 추천 시스템과 달리 소셜네트워크에서 콘텐츠 생산자에 대한 중요도가 반영됨으로 보다 신뢰성이 있는 결과를 얻을 수있다.

As the volume of internet and web contents have shown an explosive growth in recent years, lately contents recommendation system (CRS) has emerged as an important issue. Consequently, researches on contents recommendation method (CRM) for CRS have been conducted consistently. However, traditional CRMs have the limitations in that they are incapable of utilizing in web 2.0 environments where positions of content creators are important. In this paper, we suggest a novel way to recommend web contents of high quality using both degree of centrality and TF-IDF. For this purpose, we analyze TF-IDF and degree of centrality after collecting RSS and FOAF. Then we recommend contents using these two analyzed values. For the verification of the suggested method, we have developed the CRS and showed the results of contents recommendation. With the suggested idea we can analyze relations between users and contents on the entered query, and can consequently provide the appropriate contents to the user. Moreover, the implemented system we suggested in this paper can provide more reliable contents than traditional CRS because the importance of the role of content creators is reflected in the new system.

키워드

참고문헌

  1. A. L. Barabási, H. Jeong, E. Ravasz, Z. Neda, A. Schuberts and T. Vicsek, "Evolution of the Social Network of Scientific Collaborations," Physica A, pp.590-614, 2002.
  2. R. Kumar, P. Ragbavan, S. Rajagopalan and A. Tomkins, "The Web and Social Networks," Computer, pp.32-36, 2002.
  3. M. J. Pazzani and D. Billsus, "Content-Based Recommendation Systems," The Adaptive Web Lecture Notes in Computer Science, Vol.4321/2007, pp.325-341, 2007.
  4. W. S. Yang, H. C. Cheng and J. B. Dia, "A Location-Aware Recommender System for Mobile Shopping Environments," Expert Systems with Applications, Vol.34, No.1, pp.437-445, Jan. 2008. https://doi.org/10.1016/j.eswa.2006.09.033
  5. D. Goldberg, D. Nichols, B. M. Oki and D. Terry, "Using Collaborative Filtering to Weave an Information Tapestry," Communications of the ACM, Vol.35, pp.61-70, 1992.
  6. J. A. Konstan, B. N. Miller, D.Maltz, J. L. Herlocker, L. R. Gordon and J. Riedl, "GroupLens: Applying Collaborative Filtering to Usenet News," Communications of the ACM, Vol.40, No.3, pp.77-87. Mar., 1997. https://doi.org/10.1145/245108.245126
  7. A. Albadvi and M. Shahbazi, "A Hybrid Recommendation Technique Based on Product Category Attributes," Expert Systems with Applications, Vol.36, No.9, pp.11480-11488, Nov., 2009. https://doi.org/10.1016/j.eswa.2009.03.046
  8. A. Albadvi and M. Shahbazi, "A Hybrid Recommendation Technique Based on Product Category Attributes," Expert Systems with Applications, Vol.36, No.9, pp.11480-11488, Nov., 2009. https://doi.org/10.1016/j.eswa.2009.03.046
  9. M. Goksedef and Ş. Günduz-Oguducü, "Combination of Web Page Recommender Systems," Expert Systems with Applications, Vol.37, No.4, pp.2911-2922, Apr., 2010. https://doi.org/10.1016/j.eswa.2009.09.046
  10. M. Montaner, B. Lopez and J. L. de la Rosa, "A Taxonomy of Recommender Agents on the Internet," Artificial Intelligence Review, Vol.19, No.4, pp.285-330, 2003. https://doi.org/10.1023/A:1022850703159
  11. M. Zanker and M. Jessenitschnig, "Collaborative Feature-Combination Recommender Exploiting Explicit and Implicit User Feedback," IEEE Conference on Commerce and Enterprise Computing, pp.49-56, 2009.
  12. http://www.foaf-project.org
  13. http://www.rssboard.org/rss-specification
  14. G. Salton and C. Buckley, "Term Weighting Approaches in Automatic Text Retrieval," Information Processing and Management, Vol.24, No.5, pp.513-523, 1988. https://doi.org/10.1016/0306-4573(88)90021-0
  15. J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, "Collaborative Filtering Recommender Systems," The Adaptive Web Lecture Notes in Computer Science, Vol.4321, pp.291-324, 2007. https://doi.org/10.1007/978-3-540-72079-9_9
  16. J. Scott, "Social Network Analysis," SAGE Publications, 2000.
  17. G. Lawton, "Knowledge Management: Ready for Prime Time?," IEEE Computer, Vol.34, No.2, pp.216-244, 2001.
  18. J. Suchal and P. Návrat, "Full Text Search Engine as Scalable K-Nearest Neighbor Recommendation System," IFIP WCC Series, Vol.331, pp.165-173, 2010.
  19. T. I. Wang, K. T. Wang and Y. M. Huang, "Using a Style-Based Ant Colony System for Adaptive Learning," Expert Systems with Applications, Vol.34, No.4, pp.2449-2464, May, 2008. https://doi.org/10.1016/j.eswa.2007.04.014
  20. Y. J. Yang and C. Wua, "An Attribute-Based Ant Colony System for Adaptive Learning Object Recommendation," Expert Systems with Applications, Vol.36, No.2, pp.3034-3047, Mar., 2009. https://doi.org/10.1016/j.eswa.2008.01.066
  21. R. Burke, "Hybrid Web Recommender Systems," The Adaptive Web, Lecture Notes In Computer Science, Vol. 4321. Springer-Verlag, Berlin, Heidelberg, pp.377-408, 2007. https://doi.org/10.1007/978-3-540-72079-9_12
  22. Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems," IEEE Computer, Vol.42, No.8, pp.30-37, Aug., 2009.
  23. http://www.facebook.com
  24. http://www.livejournal.com
  25. http://www.twiiter.com