DOI QR코드

DOI QR Code

A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential

이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용

  • Kang, Eun-Ha (Department of Earth and Environmental Sciences, Korea University) ;
  • Brune, William H. (Department of Meteorology, The Pennsylvania State University) ;
  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jung, Mu-Hyun (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Mee-Hye (Department of Earth and Environmental Sciences, Korea University)
  • 강은하 (고려대학교 지구환경과학과) ;
  • ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 윤순창 (서울대학교 지구환경과학부) ;
  • 정무현 (고려대학교 지구환경과학과) ;
  • 이미혜 (고려대학교 지구환경과학과)
  • Received : 2011.04.25
  • Accepted : 2011.08.16
  • Published : 2011.10.31

Abstract

The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

Keywords

References

  1. Alfarra, M.R., D. Paulsen, M. Gysel, A.A. Garforth, J. Dommen, A.S.H. Prevot, D.R. Worsnop, U. Baltensperger, and H. Coe (2006) A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279-5293, doi:10.5194/acp-6-5279-2006.
  2. Baltensperger, U., J. Dommen, M.R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M.C. Facchini, S. Decesari, E. Finessi, C. Reinnig, M. Schott, J. Warnke, T. Hoffmann, B. Klatzer, H. Puxbaum, M. Geiser, M. Savi, D. Lang, M. Kalberer, and T. Geiser (2008) Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project, J. Aerosol Med. Pulm. Drug. Deliv., 21(1), 145-154. https://doi.org/10.1089/jamp.2007.0655
  3. Carlton, A.G., C. Wiedinmyer, and J.H. Kroll (2009) A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987-5005. https://doi.org/10.5194/acp-9-4987-2009
  4. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, L. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland (2007) Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M.K.B. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, 158-170.
  5. Gao, S., M. Keywood, V. Varutbangkul, R. Bahreini, R.C. Flagan, and J.H. Seinfeld (2004) Low-molecularweight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alpha-pinene, J. Phys. Chem., A108, 10147-10164. https://doi.org/10.1021/jp047466e
  6. George, I.J. and J.P.D. Abbatt (2010) Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation, Atmos. Chem. Phys., 10, 5551-5563, doi:10.5194/acp-10-5551-2010.
  7. Hallquist, M., J.C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N.M. Donahue, C. George, A.H. Goldstein, J.F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M.E. Jenkin, J.L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th.F. Mentel, A. Monod, A.S.H. Pévôt, J.H. Seinfeld, J.D. Surratt, R. Szmigielski, and J. Wildt (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155-5236, doi:10.5194/acp-9-5155-2009.
  8. Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prèvôt, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, R. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, K. Kondo, J. Schneider, F. Frewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009) Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529. https://doi.org/10.1126/science.1180353
  9. Kang, E., D.W. Toohey, and W.H. Brune (2011) Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: Experimental PAM chamber studies, Atmos. Chem. Phys., 11, 1837-1851. https://doi.org/10.5194/acp-11-1837-2011
  10. Kang, E., M.J. Root, D.W. Toohey, and W.H. Brune (2007) Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727-5744. https://doi.org/10.5194/acp-7-5727-2007
  11. Kroll, J.H. and J.H. Seinfeld (2008) Chemistry of secondary organic aerosol: Formation and evolution of lowvolatility organics in the atmosphere, Atmos. Environ., 42, 3593-3624. https://doi.org/10.1016/j.atmosenv.2008.01.003
  12. Lee, A., A.H. Goldstein, J.H. Kroll, N.L. Ng, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2006) Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophys. Res., 111, D17305,doi:10.1029/2006JD007050.
  13. Lee, M., M. Song, K.J. Moon, J.S. Han, G. Lee, and K. Kim (2007) Origins and chemical characteristics of fine aerosol during the northeastern Asia regional experiment (Atmospheric Brown Cloud-East Asia Regional Experiment 2005), Journal of Geophysical Research, 112, D22S29, doi:10.1029/2006JD008210.
  14. Mao, J., X. Ren, W.H. Brune, J.R. Olson, J.H. Crawford, A. Fried, L.G. Huey, R.C. Cohen, B. Heikes, H.B. Singh, D.R. Blake, G.W. Sachse, G.S. Diskin, S.R. Hall, and R.E. Shetter (2009) Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163-173, doi:10.5194/acp-9-163-2009.
  15. Matsunaga, A. and P.J. Ziemann (2010) Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements, Aerosol. Sci. Tech., 44(10), 881-892. https://doi.org/10.1080/02786826.2010.501044
  16. Presto, A.A., M.A. Miracolo, J.H. Kroll, D.R. Worsnop, A.L. Robinson, and N.M. Donahue (2009) Intermediatevolatility organic compounds: a potential source of ambient oxidized organic aerosol, Environ. Sci. Technol., 43(13), 4744-4749. https://doi.org/10.1021/es803219q
  17. Ren, X., H. Harder, M. Martinez, R.L. Lesher, A. Oliger, T. Shirley, J. Adams, J.B. Simpas, and W.H. Brune (2003) HOx concentrations and OH reactivity observations on New York City during PMTACS-NY2001, Atmos. Enrivon., 37, 3627-3637. https://doi.org/10.1016/S1352-2310(03)00460-6
  18. Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259-262. https://doi.org/10.1126/science.1133061
  19. Seinfeld, J.H. and S.N. Pandis (2006) Atmospheric chemistry and physics from air pollution to climate change, 2nd edition, John Wiley & Sons Inc. Hoboken, New Jersey, USA, 55-60.
  20. Volkamer, R., F.S. Martini, L.T. Molina, D. Salcedo, J.L. Jimenez, and M.J. Molina (2007) A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophys. Res. Lett., 34, L19807, doi: 10.1029/2007GL030752.
  21. Volkamer, R., J.L. Jimenez, F.S. Martini, K. Dzepina, Q. Zhang, D. Salcedo, L.T. Molina, D.R. Worsnop, and M.J. Molina (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected, Geophys. Res. Lett., 33, L17811, doi:10.1029/2006GL026899.
  22. Volkamer, R., P.J. Ziemann, and M.J. Molina (2009) Secondary Organic Aerosol Formation from Acetylene ($C_2H_2$): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907-1928.

Cited by

  1. Diurnal Size Distributions of Black Carbon by Comparison of Optical Particulate Measurements - Part I vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.001
  2. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea vol.18, pp.9, 2018, https://doi.org/10.5194/acp-18-6661-2018