DOI QR코드

DOI QR Code

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin (Department of Electrical and Computer Engineering, Northeastern University)
  • Published : 2011.10.25

Abstract

As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

Keywords

References

  1. R. C. Baumann, IEEE Trans Dev Mat Rel 1, 17 (2001) [http://dx.doi.org/10.1109/7298.946456].
  2. M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, IEEE International Electron Devices Meeting (Washington, DC 2005 Dec. 5) p. 9. [http://dx.doi.org/10.1109/IEDM.2005.1609253].
  3. Stanford University Nanoelectronics Group. Stanford University CNFET Model. Retrieved from http://nano.stanford.edu/model.php?id=23.
  4. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, IEEE Trans Electron Devices 50, 1853 (2003) [http://dx.doi.org/10.1109/ted.2003.815366].
  5. A. Akturk, G. Pennington, N. Goldsman, and A. Wickenden, IEEE Trans Nanotechnol 6, 469 (2007) [http://dx.doi.org/10.1109/tnano.2007.896968].
  6. H. Hashempour and F. Lombardi, IEEE Des Test Comput 25, 178 (2008) [http://dx.doi.org/10.1109/mdt.2008.34].
  7. Y. M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, IEEE Trans Nanotechnol 4, 481 (2005) [http://dx.doi.org/10.1109/tnano.2005.851427].
  8. J. Deng and H. S. P. Wong, IEEE Trans Electron Devices 54, 3195 (2007) [http://dx.doi.org/10.1109/ted.2007.909043].
  9. J. Guo, A. Javey, H. Dai, S. Datta, and M. Lundstrom, eprint arXiv:cond-mat/0309039 (2003).
  10. K. K. Kim and Y. B. Kim, IEEE Trans Very Large Scale Integr (VLSI) Syst 17, 517 (2009) [http://dx.doi.org/10.1109/TVLSI.2008.2007958].
  11. A. Raychowdhury and K. Roy, IEEE Trans Nanotechnol 4, 168 (2005) [http://dx.doi.org/10.1109/tnano.2004.842068].
  12. S. Lin, Y. B. Kim, and F. Lombardi, Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems (Cancun, Mexico 2009 Aug. 2-5) p. 435. [http://dx.doi.org/10.1109/MWSCAS.2009.5236063].
  13. T. P. Haraszti, CMOS Memory Circuits (Kluwer Academic Publishers, Boston, 2000).
  14. F. Ricci, L. T. Clark, T. Beatty, W. Yu, A. Bashmakov, S. Demmons, E. Fox, J. Miller, M. Biyani, and J. Haigh, Symposium on VLSI Circuits (Kyoto, Japan 2005 Jun. 16-18) p. 12. [http://dx.doi.org/10.1109/VLSIC.2005.1469322].
  15. A. P. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High- Performance Microprocessor Circuits (IEEE Press, New York, 2001) p. 290-296.
  16. K. K. Kim and Y. B. Kim, IEEE International Symposium on Circuits and Systems (New Orleans, LA 2007 May 27-30) p. 1161. [http://dx.doi.org/10.1109/ISCAS.2007.378256].
  17. M. Mukaidono, IEEE Trans Comput C-35, 179 (1986) [http://dx.doi.org/10.1109/TC.1986.1676738].
  18. T. Araki, H. Tatsumi, M. Mukaidono, and F. Yamamoto, Proceedings of the 28th International Symposium on Multiple-Valued Logic (Fukuoka, Japan 1998 May 27-29) p. 289. [http://dx.doi.org/10.1109/ISMVL.1998.679472].
  19. P. C. Balla and A. Antoniou, IEEE J Solid-State Circuits SC-19, 739 (1984) [http://dx.doi.org/10.1109/JSSC.1984.1052216].
  20. A. Heung and H. T. Mouftah, IEEE J Solid-State Circuits SC-20, 609 (1984) [http://dx.doi.org/10.1109/JSSC.1985.1052354].
  21. D. A. Rich, IEEE Trans Comput C-35, 99 (1986) [http://dx.doi.org/10.1109/TC.1986.1676727].
  22. Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, IEEE J Solid-State Circuits SC-21, 162 (1986) [http://dx.doi.org/10.1109/JSSC.1986.1052493].
  23. S. Lin, Y. B. Kim, and F. Lombardi, IEEE Trans Nanotechnol 10, 217 (2011) [http://dx.doi.org/10.1109/TNANO.2009.2036845].
  24. J. Appenzeller, Proc IEEE 96, 201 (2008) [http://dx.doi.org/10.1109/jproc.2007.911051].
  25. J. Deng and H. S. P. Wong, IEEE Trans Electron Devices 54, 3186 (2007) [http://dx.doi.org/10.1109/ted.2007.909030].
  26. A. P. Dhande and V. T. Ingole, Proceedings of the 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications (Tunisia 2005 Mar. 17-21).
  27. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001) [http://dx.doi.org/10.1126/science.1065824].
  28. S. Lin, Y. B. Kim, F. Lombardi, and Y. J. Lee, Proceedings of the International SoC Design Conference (Busan, Korea 2008 Nov. 24-25) p. I168. [http://dx.doi.org/10.1109/SOCDC.2008.4815599].
  29. Nanoscale Integration and Modeling (NIMO) Group (Nov. 15, 2008). Berkeley Predictive Technology Model. Retrieved from http://ptm.asu.edu/.
  30. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001) [http://dx.doi.org/10.1021/jp012085b].
  31. Y. Ohno, S. Kishimoto, T. Mizutani, T. Okazaki, and H. Shinohara, Appl. Phys. Lett. 84, 1368 (2004) [http://dx.doi.org/10.1063/1.1650554].
  32. C. Geunho, F. Lombardi, and K. Yong-Bin, Proceedings of the IEEE 25th International Symposium on Defect and Fault Tolerance in VLSI Systems (Kyoto, Japan 2010 Oct. 6-8) p. 289. [http://dx.doi.org/10.1109/DFT.2010.42].
  33. G. Cho, Y. B. Kim, and F. Lombardi, IEEE Trans Dev Mat Rel 11, 263 (2011) [http://dx.doi.org/10.1109/tdmr.2011.2123896].
  34. E. Seevinck, F. J. List, and J. Lohstroh, IEEE J Solid-State Circuits SC-22, 748 (1987) [http://dx.doi.org/10.1109/JSSC.1987.1052809].
  35. E. Grossar, M. Stucchi, K. Maex, and W. Dehaene, IEEE J Solid- State Circuits 41, 2577 (2006) [http://dx.doi.org/10.1109/jssc.2006.883344].
  36. S. Lin, Y. B. Kim, and F. Lombardi, IEEE Trans Nanotechnol 9, 30 (2010) [http://dx.doi.org/10.1109/tnano.2009.2025128].
  37. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Proc IEEE 91, 305 (2003) [http://dx.doi.org/10.1109/jproc.2002.808156].
  38. B. C. Paul, S. Fujita, M. Okajima, T. H. Lee, H. S. P. Wong, and Y. Nishi, IEEE Trans Electron Devices 54, 2369 (2007) [http://dx.doi.org/10.1109/ted.2007.901882].

Cited by

  1. CNFET-Based Design of Energy-Efficient Symmetric Three-Input XOR and Full Adder Circuits vol.38, pp.12, 2013, https://doi.org/10.1007/s13369-013-0627-9
  2. SiGe Synthesis by Ge Ion Implantation vol.51, pp.9S2, 2012, https://doi.org/10.7567/JJAP.51.09MF03
  3. Design and analysis of a gate-all-around CNTFET-based SRAM cell 2017, https://doi.org/10.1007/s10825-017-1056-x
  4. Design and Evaluation of an Efficient Schmitt Trigger-Based Hardened Latch in CNTFET Technology vol.17, pp.1, 2017, https://doi.org/10.1109/TDMR.2017.2665780
  5. Application of quantum dot gate FETs (QDGFETs) in ternary logic image inversion vol.87, pp.1, 2016, https://doi.org/10.1007/s10470-015-0673-1
  6. A Comparative Security Analysis of Current and Emerging Technologies vol.36, pp.5, 2016, https://doi.org/10.1109/MM.2016.87
  7. Ternary universal logic gates using quantum dot gate field effect transistors vol.88, pp.12, 2014, https://doi.org/10.1007/s12648-014-0583-6
  8. Design, simulation and comparative analysis of CNT based cascode operational transconductance amplifiers vol.26, pp.39, 2015, https://doi.org/10.1088/0957-4484/26/39/395201
  9. Design and Comparative Analysis of High Performance Carbon Nanotube-Based Operational Transconductance Amplifiers vol.10, pp.03, 2015, https://doi.org/10.1142/S1793292015500393
  10. Unipolar Logic Gates Based on Spatial Wave-Function Switched FETs vol.23, pp.4, 2015, https://doi.org/10.1109/TVLSI.2014.2320912
  11. A Novel Carbon Nanotube Field Effect Transistor based Arithmetic Computing Circuit for Low-power Analog Signal Processing Application vol.12, 2014, https://doi.org/10.1016/j.protcy.2013.12.469
  12. CNFET Based Voltage Differencing Transconductance Amplifier vol.225, 2017, https://doi.org/10.1088/1757-899X/225/1/012253
  13. Memristor-CNTFET based ternary logic gates vol.72, 2018, https://doi.org/10.1016/j.mejo.2017.12.008
  14. An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis pp.2092-7843, 2018, https://doi.org/10.1007/s13206-018-2405-y