DOI QR코드

DOI QR Code

Robust Optimization of the Solenoid Assembly in Electromagnetic Limited Slip Differential by Considering the Uncertainties in Machining Variables

가공변수의 불확실성을 고려한 전자제어식 차동제한장치 솔레노이드 어셈블리의 강건 최적설계

  • Received : 2011.05.18
  • Accepted : 2011.08.03
  • Published : 2011.10.01

Abstract

The mechanical limited slip differential (LSD) in vehicles is being replaced by the electromagnetic LSD because of its fast response and better active control characteristics. The coil housing made of STS 304 is one of the most important parts in the solenoid assembly of the electromagnetic LSD. High geometrical accuracy is a prerequisite for the manufacture of such coil housings, but precision machining is difficult because of the use of STS 304 thin plate and the variance in machining variables. The aim of this study is to optimize the mean and variance of the shape accuracy in the coil housing by finding a robust solution for the machining process conditions. The mean and standard deviation of the jaw contact pressure, cutting speed, and feed rate are considered to be the major parameters for minimizing the geometrical mean and variance. The response surface model based on the second-order Taylor series is combined together to minimize the mean and variance of the shape accuracy of the coil housing.

전자제어식 차동제한 장치는 기계식에 비해서 능동제어가 가능하고 응답성이 좋아 기계식을 대체해 나가고 있다. STS 304 재질의 코일 하우징은 전자제어식 차동제한장치의 솔레노이드 어셈블리에서 가장 중요한 부품이다. 코일 하우징의 제조시 높은 형상 정밀도가 필수적이나, STS 304의 박판 사용과 가공변수의 변동으로 정밀 가공이 어렵다. 본 연구의 목적은 코일하우징의 가공조건에서 강건해를 구하여 평균과 변동을 최적화 하는 것이다. 코일하우징의 형상정밀도 평균과 표준편차를 최소화 하기 위한 주요 변수로 조의 척킹압력, 절삭속도, 이송속도의 평균과 표준편차가 고려됐다. 가공변수의 변동을 고려하여 평균과 표준편차를 모두 최소화 하는 최적의 조건을 선정하고자 반응표면모델 기반 2차 테일러 전개를 통한 강건 최적설계를 수행하였다.

Keywords

References

  1. Lee, S. K. and Lee, J. H., 2002, "Chucking Compliance Compensation by Using Liner Motor," Trans. Korean Soc. Mech. Engng(A), Vol. 26, No. 1, pp. 15- 22. https://doi.org/10.3795/KSME-A.2002.26.1.015
  2. Lai, G. J. and Chang, J. Y., 1995, "Stability Analysis of Chatter Vibration for a Thin-wall Cylindrical Workpiece," Int. J. Mach. Tools Manufact., Vol. 35, No. 3, pp. 431-444. https://doi.org/10.1016/0890-6955(94)E0011-7
  3. Cho, N. and Tu, J., 2001, "Roundness Modeling of Machined Parts for Tolerance Analysis," J. Int. Prec. Engng. Nanotech., Vol.25, pp.35-47.
  4. Oh, S. K., Suh, C. H., Lee, R. G., Jung, Y. C. and Kim, Y. S., 2009, "Optimization of Machining Variables to Improve the Geometrical Accuracy of the Solenoid Assembly in Electro-Magnetic LSD," 2009 KSME Fall Annual Meeting, pp.1123-1128.
  5. Rahman, M., 1989, "A Study on the Deviation of a Turned Workpiece Clamped by Multiple Jaws," Annals CIRP, Vol. 38, No. 1, pp. 385-388. https://doi.org/10.1016/S0007-8506(07)62729-2
  6. Rahman, M. and Ito, T., 1979, "Machining Accuracy of a Cylindrical Workpice Held by a Three-Jaw Chuck," Bull. Japan Soc. Prec. Engng., Vol. 13, No. 1, pp. 7-12.
  7. Mason, R. L., Gunst, R. F. and Hess, J. L., 2003, Statistical Design and Analysis of Experiments, Jone Wiley & Sons.
  8. Myers, R.M. and Montgomery, D.C., 1995, Response Surface Methodology-Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York.
  9. Lee, K. K., Park, C. K. and Han, S. H., 2009, "Six Sigma Robust Design for Railway Vehicle Suspension," Transaction of KSME A, Vol. 33, No. 10, pp. 1132-1138. https://doi.org/10.3795/KSME-A.2009.33.10.1132
  10. Taylor, W. A., 1991, Optimization & Variation Reduction in Quality, McGraw-Hill.
  11. SAS Institute Inc., 2010, JMP User's Guide.

Cited by

  1. Optimization of Design Parameters for Lock-Claws of Pneumatic Fitting Using Taguchi Method vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-A.2013.37.12.1541
  2. Optimization of Design Parameters for Steel Grating Using Taguchi Method Considering Rigidity and Drainage Efficiency vol.38, pp.8, 2014, https://doi.org/10.3795/KSME-A.2014.38.8.905