DOI QR코드

DOI QR Code

Comparison and Estimation of Fretting Fatigue Damage Parameters for Aluminum Alloy A7075-T6

A7075-T6 알루미늄 합금의 프레팅 피로 손상 파라미터 비교 평가

  • 황동현 (홍익대학교 기계공학과) ;
  • 조성산 (홍익대학교 기계공학과)
  • Received : 2011.04.12
  • Accepted : 2011.08.05
  • Published : 2011.10.01

Abstract

Fatigue tests were conducted on the aluminum alloy, A7075-T6 to determine the most reliable fretting fatigue damage parameter. Specimens with grooves were used, so that either fretting fatigue crack at the pad/specimen interface or plain fatigue crack at the groove could be nucleated, depending on the pad pressure. Both the crack nucleation location and initial crack orientation were examined using optical microscopy, and the results were used to assess the reliability of the various fretting fatigue damage parameters that have been most commonly used in the literature. Finite element analysis was employed to obtain the stress and strain data of the specimen, which were needed to estimate the parameter values and the orientation of the critical plane. It was revealed that both the Fatemi.Socie and McDiarmid parameters, which assume shear-mode fatigue cracking, are the most reliable.

신뢰성이 가장 우수한 프레팅 피로손상 파라미터를 찾아내기 위해 알루미늄 합금 A7075-T6 을 대상으로 피로시험을 수행하였다. 시편 표면에 홈을 가공하여 패드 접촉압력에 따라 패드-시편 접촉면에서 프레팅 피로균열이 발생하거나 또는 홈에서 일반 피로균열이 발생할 수 있게 하였다. 광학현미경을 이용하여 균열의 발생위치와 방향을 측정하고, 문헌에서 가장 많이 사용되는 프레팅 피로손상 파라미터들의 신뢰성을 평가하였다. 파라미터 값과 최대손상평면 방향을 산출하는데 필요한 응력과 변형률 자료는 유한요소해석으로 산출하였다. 전단모드 피로파손을 가정하는 Fatemi-Socie 파라 미터와 McDiarmid 파라미터가 가장 신뢰성이 높은 것으로 판명되었다.

Keywords

References

  1. Milestone, W. D. and Janeczko, J. T, 1971, "Friction Between Steel Surfaces During Fretting," Wear, Vol. 18, pp. 29-40. https://doi.org/10.1016/0043-1648(71)90062-7
  2. Wharton, M. H., Waterhouse, R. B., Hirakawa, K. and Nishoika, K., 1973, "The Effect of Different Contact Materials on the Fretting Fatigue Strength of an Aluminum Alloy," Wear, Vol. 26, p. 253. https://doi.org/10.1016/0043-1648(73)90139-7
  3. Hattori, T., Nakamura, M. and Watanabe, T., 1984, "Fretting Fatigue Analysis by Using Fracture Mechanics," ASME paper no. 84-WA/DE-10
  4. King, R. N. and Lindley, T. C., 1980, "Fretting Fatigue in a 3.5 Ni-Cr-Mo-V Rotor Steel," Proceedings of ICF5, p. 631.
  5. Hattori, T., Sakata, S. and Ohnishi, H., 1984, "Slipping Behavior and Fretting Fatigue in the Disk/Blade Dovetail Region," Proceedings of the 1983 Tokyo international gas turbine congress, p. 945.
  6. Gassner, E., 1967, "The Value of Surface-Protective Media Against Fretting Corrosion on the Basis of Fatigue Strength Tests," Laboratorium fur Betriebsfestigkeit TM19/67
  7. Hattori, T., Kawai, S., Okamoto, N. and Sonobe, T., 1981, "Torsional Fatigue Strength of a Shrink-Fitted Shaft," Bull JSME, Vol. 24, No. 197, p. 1893.
  8. Dominguez J., 1998, "Cyclic Variation in Friction Forces and Contact Stresses During Fretting Fatigue," Wear, Vol. 218, pp. 43-53. https://doi.org/10.1016/S0043-1648(98)00193-8
  9. Szolwinski, M. P. and Farris, T. N., 1996, "Mechanics of Fretting Crack Formation," Wear, Vol. 198, pp. 93-107. https://doi.org/10.1016/0043-1648(96)06937-2
  10. Smith, K. N., Watson, P. and Topper, T. H., 1970, "A Stress-Strain Function for Fatigue of Metals," J Materials, Vol. 5, No. 5, pp. 767-778.
  11. Fatemi, A. and Socie, D., 1988," A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading," Fatigue Fract Eng Mater Struct, Vol. 11, pp. 145-65.
  12. McDiarmid, D. L., 1994, "A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue Failure for Design and Life Prediction," Fatigue Fract Eng Mater Struct, Vol. 17, pp. 1475-1484. https://doi.org/10.1111/j.1460-2695.1994.tb00789.x
  13. Crossland, B., 1956, "Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel," Proceedings of the international conference on fatigue of metals, pp. 138-149.
  14. Navarro, C., Munoz, S. and Dominguez, J., 2008, "On the Use of Multiaxial Fatigue Criteria for Fretting Fatigue Life Assessment," International Journal of Fatigue, Vol. 30, pp. 32-44. https://doi.org/10.1016/j.ijfatigue.2007.02.018
  15. Lykins, C. D., Mall, S. and Jain V., 2000, "An Evaluation of Parameters for Predicting Fretting Fatigue Crack Initiation," International Journal of Fatigue, Vol. 22, pp. 703-716. https://doi.org/10.1016/S0142-1123(00)00036-0
  16. Swalla, D. R. and Nuw, R. W., 2001, "Influence of Coefficient of Friction on Fretting Fatigue Crack Nucleation Prediction" Tribology International, Vol. 34, pp. 493-503. https://doi.org/10.1016/S0301-679X(01)00048-2
  17. Tsai, C.T. and Mall, S., 2000, "Elasto-Plastic Finite Element Analysis of Fretting Stresses in Prestressed Strip in Contact with Cylindrical Pad," Finite Elements in Analysis and Design, Vol. 36, pp. 171-187. https://doi.org/10.1016/S0168-874X(00)00016-0