DOI QR코드

DOI QR Code

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction

모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석

  • Han, Jeong-Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 한정삼 (안동대학교 기계설계공학과)
  • Received : 2011.04.11
  • Accepted : 2011.05.02
  • Published : 2011.10.01

Abstract

It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

일반적으로 회전체나 초기 하중 하의 구조물 또는 열변형된 파이프 등의 프리스트레스 구조물은 이러한 프리스트레스 효과로 인하여 고유진동수 및 고유진동모드가 변화되기 때문에 정확한 고유진동해석을 위해서는 프리스트레스 고유진동해석을 수행해야 한다. 시스템에 따라서는 그 복잡성으로 인하여 수십만~수백만의 큰 자유도를 갖는 대형 유한요소모델이 요구되어 이러한 대형 모델의 프리스트레스 영향을 파악하기 위한 프리스트레스 고유진동해석을 주어진 설계시간 내에 반복적으로 수행하기에는 여전히 시간적 어려움이 많은 형편이다. 따라서, 본 논문에서는 크리로프 부공간에 근거한 축소기법으로 시스템의 초기 유한요소모델에 대하여 고유진동 특성을 정확하게 나타내면서도 작은 차수의 축소모델로 표현하여 프리스트레스 고유진동해석에서의 계산시간 문제를 감소하였다. 초기 시스템과 축소 시스템의 모멘트를 일치하는 수치계산에는 아놀디 과정을 이용하였다. 적용예제로 휠과 컴프레서 임펠러를 선택하여 제안한 방법을 통한 회전에 따른 프리스트레스 고유진동해석의 정확성과 효율성을 보였다.

Keywords

References

  1. Han, J. S., 2006, "System Reduction Method for Eigenvalue Analysis of Structures," Proceedings of the KSME 2006 Fall Annual Meeting, pp. 7-12.
  2. Joo, B. H. and Lee, B. C., 2003, "Improvement of Computational Efficiency of the Subspace Iteration Method for Large Finite Element Models," Transactions of the KSME A, Vol. 27, No. 4, pp. 551-558. https://doi.org/10.3795/KSME-A.2003.27.4.551
  3. Choi, D., Kim, H. K. and Cho, M., 2007, "Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (I) - Undamped Structural Systems," Transactions of the KSME A, Vol. 31, No. 2, pp. 211-220. https://doi.org/10.3795/KSME-A.2007.31.2.211
  4. Han, J. S. and Ko, J. H., 2009, "Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method," Transactions of the KSME A, Vol. 33, No. 9, pp. 859-992. https://doi.org/10.3795/KSME-A.2009.33.9.878
  5. Han, J. S., 2007, "Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models," Transactions of the KSME A, Vol. 31, No. 5, pp. 541-549. https://doi.org/10.3795/KSME-A.2007.31.5.541
  6. Han, J. S., 2006, "Efficient Vibration Simulation Using Model Order Reduction," Transactions of the KSME A, Vol. 30, No. 3, pp. 310-317. https://doi.org/10.3795/KSME-A.2006.30.3.310
  7. Han, J. S., Rudnyi, E. B. and Korvink, J. G., 2005, "Efficient Optimization of Transient Dynamic Problems in MEMS Devices Using Model Order Reduction," J. Micromech. Microeng., Vol. 15, pp. 822-832. https://doi.org/10.1088/0960-1317/15/4/021
  8. Rudnyi, E. and Korvink, J., 2006, "Model Order Reduction for Large Scale Engineering Models Developed in ANSYS," Lecture Notes in Computer Science, Vol. 3732, pp. 349-356. https://doi.org/10.1007/11558958_41
  9. Su, T. J. and Craig, Jr. R. R., 1991, "Krylov Model Reduction Algorithm for Undamped Structural Dynamics Systems," J. Guid. Control Dyn., Vol. 14, pp. 1311-1313. https://doi.org/10.2514/3.20789
  10. Freund, R. W., 2000, "Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation," J. Comput. Appl. Math., Vol. 123, pp. 395-421. https://doi.org/10.1016/S0377-0427(00)00396-4
  11. Qu, Z., 2004, "Model Order Reduction Techniques with Applications in Finite Element Analysis," Springer.
  12. ANSYS, 2007, ANSYS Theory Reference 11.0, SAS IP, Inc.
  13. Matrix Market, http://math.nist.gov/MatrixMarket/, 2011.
  14. The MathWorks, Inc., http://www.mathworks.com, 2011.
  15. Bathe, K. J., 1996, "Finite Element Procedures," Prentice-Hall, Inc.

Cited by

  1. Comparison of Projection-Based Model Order Reduction for Frequency Responses vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.933