References
- W. Pedrycz, "An identification algorithm in fuzzy relational system". Fuzzy Sets Syst., vol. 13, pp, 153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
- R. M. Tong, "The evaluation of fuzzy models derived from experimental data," Fuzzy Sets Syst., vol. 13, pp 1-12, 1980.
- C. W. Xu., Y. Zailu, "Fuzzy model identification selflearning for dynamic system" IEEE Trans. Syst., Man cybern., vol. 17, no 4, pp, 683-689, 1987. https://doi.org/10.1109/TSMC.1987.289361
- M. Sugeno, T. Yasukawa, "Linguistic modeling based on numerical data." in Proceedings of IFSA'91 Brussels, Computer, Management & System Science, pp, 264-267. 1991.
- S. K. Oh., W. Pedrycz, "Identification of Fuzzy Systems by means of an Auto-Tuning Algorithm and Its Application to Nonlinear Systems," Fuzzy Sets and Syst., vol. 115, no 2, pp, 205-230, 2000. https://doi.org/10.1016/S0165-0114(98)00174-2
- W.Y Chung, W. Pedrycz, E.T Kim, "A new twophase approach to fuzzy modeling for nonlinear function approximation," IEICE Trans. Info. Syst., vol. 9, pp, 2473-2483, 2006.
- B. J. Park., W. Pedrycz., S. K. Oh, "Identification of Fuzzy Models with the Aid of Evolutionary Data Granulation". IEE Proc.-Control Theory and Applications, vol. 148, pp, 406-418, 2001. https://doi.org/10.1049/ip-cta:20010677
- W.Y. Chung, E.T. Kim, "A new two-phase approach to fuzzy modeling for nonlinear function approximation," IEICE Trans. Inform. Syst., vol. E89-D, no. 9, pp. 2473-2483, 2006. https://doi.org/10.1093/ietisy/e89-d.9.2473
- F.J. Lin, L.T. Teng, J.W. Lin, S.Y. Chen, "Recurrent Functional-Link-Based Fuzzy-Neural-Network-Controlled Induction-Generator System Using Improved Particle Swarm Optimization," IEEE Trans. Indust. Elect., vol. 56, no. 5, pp. 1557-1577, 2009. https://doi.org/10.1109/TIE.2008.2010105
- W. Pedrycz, K.C Kwak, "Linguistic models as a framework of user-centric system modeling," IEEE Trans. Syst., man cybern. -PART A : Systems and humans, vol. 36, no. 4, pp. 727-745, 2006. https://doi.org/10.1109/TSMCA.2005.855755
- A. Bastian, "Identifying fuzzy models utilizing genetic programming," Fuzzy Sets and Syst., vol. 112, pp. 333-350, 2000. https://doi.org/10.1016/S0165-0114(98)00018-9
- Y. Jin, "Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement," IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 212-221, 2000. https://doi.org/10.1109/91.842154
- M. Setnes, H. Roubos, "GA-based modeling and classification: complexity and performance," IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 509-522, 2000. https://doi.org/10.1109/91.873575
- C. Coello, G. Pulido, "Multiobjective optimization using a micro-genetic algorithm," in Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 274-282, 2001.
- K. Deb, S. Agrawal, A. Pratab, S. Agarwal, T. Meyarivan, "A fast and elitist multi-objective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput. , vol. 6, no.2, pp. 182-197, 2002. https://doi.org/10.1109/4235.996017
- G. Avigad, A. Moshaiov, "Interactive Evolutionary Multiobjective Search and Optimization of Set-Based Concepts," IEEE Trans. Syst., Man cybern.-Part B, vol. 38, nol. 2, pp. 381-403, 2008. https://doi.org/10.1109/TSMCB.2007.912937
- C. Coello, G. Pulido, M. Salazar, "Handling multiobjectives with particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, pp. 256-279, 2004. https://doi.org/10.1109/TEVC.2004.826067
- G.G. Yen, W.F. Leong, "Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization," IEEE Trans. Syst., Man Cybern.-PART A, vol. 39, nol. 4, pp. 890-911, 2009. https://doi.org/10.1109/TSMCA.2009.2013915
- L.J. Herrera, H. Pomares, I. Rojas, O. Valenzuela, and A. Prieto, "TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy," Fuzzy Sets and Syst., vol. 153, pp. 403-427, 2005. https://doi.org/10.1016/j.fss.2005.01.012
- M. Delgado, M.P. Ceullar, and M.C. Pegalajar, "Multiobjective Hybrid Optimization and Training of Recurrent Neural Networks," IEEE Trans. Syst., Man cybern. -Part B, vol. 38, nol. 2, pp. 381-403, 2008. https://doi.org/10.1109/TSMCB.2007.912937
- W. Huang, L. Ding, "Project-Scheduling problem with random time-dependent activity duration times," IEEE Transactions on Engineering Management, vol. 58, no. 2, pp. 377-387, May 2011. https://doi.org/10.1109/TEM.2010.2063707
- W. Huang, L. Ding, S.K. Oh, C.W. Jeong, S.C. Joo, "Identification of fuzzy inference system based on information granulation," KSII Transactions on Internet and Information Systems, vol. 4, no. 4, pp. 575-594, August 2010. https://doi.org/10.3837/tiis.2010.08.008
- B. J. Park., W. Pedrycz., S. K. Oh, "Identification of Fuzzy Models with the Aid of Evolutionary Data Granulation," IEE Proc.-Control Theory and Applications, vol. 148, pp, 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
- K.J. Park, W. Pedrycz, S.K. Oh, "A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method", Simulation Modelling Practice and Theory, vol. 15, pp, 1128-1145, 2007. https://doi.org/10.1016/j.simpat.2007.07.001
- S.K. Oh, W. Pedrycz, H.S. Prak, "Hybrid identification in fuzzy-neural networks", Fuzzy Set System, vol. 138, Issue 2, pp, 399-426, 2003. https://doi.org/10.1016/S0165-0114(02)00441-4
- H.S. Park, S.K. Oh, "Fuzzy relation-based fuzzy neural-networks using a hybrid identification algorithm", Int. J. Cont., Autom., Syst., vol. 1, Issue 2, pp. 289-300, 2003.
- H.S. Park, S.K. Oh, "Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation", Int. J. Cont., Autom., Syst., vol. 1, Issue 2, pp. 194-202, 2003.
- S.K. Oh, W. Pedrycz, H.S. Prak, "Implicit rule-based fuzzy-neural networks using the identification algorithm of hybrid scheme based on information granulation", Adv. Eng. Inform. vol. 16, Issue 4, pp. 247-263, 2002. https://doi.org/10.1016/S1474-0346(03)00016-8
- J.N. Choi, S.K. Oh, W. Pedrycz, "Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation", Applied Mathematical Modelling, vol. 33, pp. 2791-2807, 2009. https://doi.org/10.1016/j.apm.2008.08.022
- In: P.R. Krishnaiah., L.N. Kanal (Eds.), "Classification, Pattern Recognition, and Reduction of Dimensionality", Handbook of Statistics, vol. 2, North-Holland, Amsterdam, 1982.
- L. X. Wang., J. M. Mendel, "Generating fuzzy rules from numerical data with applications", IEEE Trans. Syst., man cybern., vol. 22, pp. 1414-1427, 1992. https://doi.org/10.1109/21.199466
- J.S.R Jang, "ANFIS: adaptive-network-based fuzzy inference system", IEEE Trans. Syst., man cybern., vol. 23, no. 3, pp. 665-685, 1993. https://doi.org/10.1109/21.256541
- L.P. Maguire, B. Roche, T.M. McGinnity, L.J. McDaid, "Predicting a chaotic time series using a fuzzy neural, network", Inform. Sci., vol. 112, pp. 125-136, 1998. https://doi.org/10.1016/S0020-0255(98)10026-9
- J.C. Duan., F.-L. Chung, "Multilevel fuzzy relational systems: structure and identification", Soft Comput., vol. 6, pp. 71-86, 2002. https://doi.org/10.1007/s005000100144
- Y. Chen., B. Yang., A. Abraham, "Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms", IEEE Trans. Fuzzy Systems, vol. 15, no. 3, pp. 385-397, 2007. https://doi.org/10.1109/TFUZZ.2006.882472
Cited by
- A Novel Fuzzy Identification Method Based on Ant Colony Optimization Algorithm vol.4, 2016, https://doi.org/10.1109/ACCESS.2016.2585670
- Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks vol.7, pp.4, 2012, https://doi.org/10.5370/JEET.2012.7.4.636
- Data-Driven Interval Type-2 Neural Fuzzy System With High Learning Accuracy and Improved Model Interpretability vol.43, pp.6, 2013, https://doi.org/10.1109/TSMCB.2012.2230253
- A novel identification method for Takagi–Sugeno fuzzy model 2018, https://doi.org/10.1016/j.fss.2017.10.012
- Hierarchical Structured Sparse Representation for T–S Fuzzy Systems Identification vol.21, pp.6, 2013, https://doi.org/10.1109/TFUZZ.2013.2240690
- Dynamic T-S Fuzzy Systems Identification Based on Sparse Regularization vol.17, pp.1, 2015, https://doi.org/10.1002/asjc.890
- Design of Fuzzy Models with the Aid of an Improved Differential Evolution vol.22, pp.4, 2012, https://doi.org/10.5391/JKIIS.2012.22.4.399
- Joint Block Structure Sparse Representation for Multi-Input–Multi-Output (MIMO) T–S Fuzzy System Identification vol.22, pp.6, 2014, https://doi.org/10.1109/TFUZZ.2013.2292973
- Identification of Fuzzy Inference Systems by Means of a Multiobjective Opposition-Based Space Search Algorithm vol.2013, 2013, https://doi.org/10.1155/2013/725017
- Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier vol.26, pp.5, 2018, https://doi.org/10.1109/TFUZZ.2017.2785244
- Hybrid Fuzzy Wavelet Neural Networks Architecture Based on Polynomial Neural Networks and Fuzzy Set/Relation Inference-Based Wavelet Neurons vol.29, pp.8, 2018, https://doi.org/10.1109/TNNLS.2017.2729589