DOI QR코드

DOI QR Code

FUZZY STRONGLY (r, s)-PREOPEN AND PRECLOSED MAPPINGS

  • Lee, Seok-Jong (Department of Mathematics Chungbuk National University) ;
  • Kim, Jin-Tae (Department of Mathematics Chungbuk National University)
  • Received : 2010.09.13
  • Published : 2011.10.31

Abstract

In this paper, we introduce the notions of fuzzy strongly (r, s)-preopen and preclosed mappings on intuitionistic fuzzy topological spaces in $\check{S}$ostak's sense. The relationships among fuzzy (r, s)-open, fuzzy strongly (r, s)-semiopen, fuzzy (r, s)-preopen, and fuzzy strongly (r, s)-preopen mappings are discussed. The characterizations for the fuzzy strongly (r, s)-preopen and preclosed mappings are obtained.

Keywords

References

  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  3. K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), no. 2, 237-242. https://doi.org/10.1016/0165-0114(92)90329-3
  4. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  5. D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL 67 (1996), 67-76.
  6. H. Gurcay, D. Coker, and A. Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), no. 2, 365-378.
  7. Y. C. Kim, A. A. Ramadan, and S. E. Abbas, r-fuzzy strongly preopen sets in fuzzy topological spaces, Mat. Vesnik 55 (2003), no. 1-2, 1-13.
  8. B. Krsteska, Fuzzy strongly preopen sets and fuzzy strong precontinuity, Mat. Vesnik 50 (1998), no. 3-4, 111-123.
  9. E. P. Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 14 (2004), 234-238. https://doi.org/10.5391/JKIIS.2004.14.2.234
  10. S. J. Lee and J. T. Kim, Fuzzy strongly (r,)-precontinuous mappings, IEEE International Conference on Fuzzy Systems (2009), 581-586.
  11. S. J. Lee and E. P. Lee, Fuzzy (r, s)-semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 16 (2006), 108-112. https://doi.org/10.5391/JKIIS.2006.16.1.108
  12. S. O. Lee and E. P. Lee, Fuzzy (r, s)-preopen sets, International Journal of Fuzzy Logic and Intelligent Systems 5 (2005), 136-139. https://doi.org/10.5391/IJFIS.2005.5.2.136
  13. S. O. Lee and E. P. Lee, Fuzzy strongly (r, s)-semiopen sets, International Journal of Fuzzy Logic and Intelligent Systems 6 (2006), no. 4, 299-303. https://doi.org/10.5391/IJFIS.2006.6.4.299
  14. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371-375. https://doi.org/10.1016/0165-0114(92)90352-5
  15. A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 89-103.
  16. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Delta Closure and Delta Interior in Intuitionistic Fuzzy Topological Spaces vol.12, pp.4, 2012, https://doi.org/10.5391/IJFIS.2012.12.4.290