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FUZZY STRONGLY (r, s)-PREOPEN

AND PRECLOSED MAPPINGS

Seok Jong Lee and Jin Tae Kim

Abstract. In this paper, we introduce the notions of fuzzy strongly
(r, s)-preopen and preclosed mappings on intuitionistic fuzzy topologi-

cal spaces in Šostak’s sense. The relationships among fuzzy (r, s)-open,

fuzzy strongly (r, s)-semiopen, fuzzy (r, s)-preopen, and fuzzy strongly
(r, s)-preopen mappings are discussed. The characterizations for the fuzzy
strongly (r, s)-preopen and preclosed mappings are obtained.

1. Introduction and preliminaries

The concept of fuzzy set was introduced by Zadeh [16]. Chang [2] defined
fuzzy topological spaces. These spaces and its generalizations are later studied
by several authors, one of which, developed by Šostak [15], used the idea of
degree of openness. This type of generalization of fuzzy topological spaces was
later rephrased by Chattopadhyay and his colleagues [3], and by Ramadan [14].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets
was introduced by Atanassov [1]. Recently, Çoker and his colleagues [4, 6] in-
troduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.
Using the idea of degree of openness and degree of nonopenness, Çoker and
Demirci [5] defined intuitionistic fuzzy topological spaces in Šostak’s sense as a
generalization of smooth topological spaces and intuitionistic fuzzy topological
spaces. Biljana Krsteska [8] introduced the concepts of fuzzy strongly pre-
open and preclosed mappings on Chang’s fuzzy topological spaces and Yong
Chan Kim and his colleagues [7] considered this concepts on smooth topological
spaces.

In this paper, we introduce the notions of fuzzy strongly (r, s)-preopen and
preclosed mappings on intuitionistic fuzzy topological spaces in Šostak’s sense.
The relationships among fuzzy (r, s)-open, fuzzy strongly (r, s)-semiopen, fuzzy
(r, s)-preopen, and fuzzy strongly (r, s)-preopen mappings are discussed. The
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characterizations for the fuzzy strongly (r, s)-preopen and preclosed mappings
are obtained.

Let I(X) be a family of all intuitionistic fuzzy sets in X and let I⊗ I be the
set of the pair (r, s) such that r, s ∈ I and r + s ≤ 1.

Definition 1.1 ([5]). LetX be a nonempty set. An intuitionistic fuzzy topology
in Šostak’s sense (SoIFT for short) T = (T1, T2) onX is a mapping T : I(X) →
I ⊗ I which satisfies the following properties:

(1) T1(0) = T1(1) = 1 and T2(0) = T2(1) = 0.
(2) T1(A ∩B) ≥ T1(A) ∧ T1(B) and T2(A ∩B) ≤ T2(A) ∨ T2(B).
(3) T1(

∪
Ai) ≥

∧
T1(Ai) and T2(

∪
Ai) ≤

∨
T2(Ai).

The (X, T ) = (X, T1, T2) is said to be an intuitionistic fuzzy topological space in
Šostak’s sense (SoIFTS for short). Also, we call T1(A) a gradation of openness
of A and T2(A) a gradation of nonopenness of A.

Definition 1.2 ([10]). Let A be an intuitionistic fuzzy set in a SoIFTS (X, T1,
T2) and (r, s) ∈ I ⊗ I. Then A is said to be

(1) fuzzy strongly (r, s)-preopen if A ⊆ int(pcl(A, r, s), r, s),
(2) fuzzy strongly (r, s)-preclosed if A ⊇ cl(pint(A, r, s), r, s).

Definition 1.3 ([10]). Let (X, T1, T2) be a SoIFTS. For each (r, s) ∈ I⊗ I and
for each A ∈ I(X), the fuzzy strongly (r, s)-preinterior is defined by

stpint(A, r, s) =
∪

{B ∈ I(X) | B ⊆ A, B is fuzzy strongly (r, s)-preopen}

and the fuzzy strongly (r, s)-preclosure is defined by

stpcl(A, r, s) =
∩

{B ∈ I(X) | A ⊆ B, B is fuzzy strongly (r, s)-preclosed}.

For the nonstandard definitions and notations we refer to [9, 10, 11, 12, 13].

2. Fuzzy strongly (r, s)-preopen and preclosed mappings

Now, we introduce the concepts of fuzzy strongly (r, s)-preopen and pre-
closed mappings, and then we investigate some of their characteristic proper-
ties.

Definition 2.1. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is called

(1) a fuzzy strongly (r, s)-preopen mapping if f(A) is a fuzzy strongly (r, s)-
preopen set in Y for each fuzzy (r, s)-open set A in X,

(2) a fuzzy strongly (r, s)-preclosed mapping if f(A) is a fuzzy strongly
(r, s)-preclosed set in Y for each fuzzy (r, s)-closed set A in X.

Remark 2.2. It is easy to see that the following implications are true:

(1) fuzzy (r, s)-open ⇒ fuzzy strongly (r, s)-preopen.
(2) fuzzy strongly (r, s)-semiopen ⇒ fuzzy strongly (r, s)-preopen.
(3) fuzzy strongly (r, s)-preopen ⇒ fuzzy (r, s)-preopen.
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However, the following examples show that all of the converses need not be
true.

Example 2.3. Let X = {x, y, z} and let A, B, and C be intuitionistic fuzzy
sets in X defined as

A(x) = (0.8, 0.1), A(y) = (0.7, 0.2), A(z) = (0.6, 0.4);

B(x) = (0.3, 0.6), B(y) = (0.1, 0.8), B(z) = (0.7, 0.2);

and
C(x) = (0.8, 0.1), C(y) = (0.8, 0.1), C(z) = (0.4, 0.5).

Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (D) = (T1(D), T2(D)) =

 (1, 0) if D = 0, 1,
( 12 ,

1
3 ) if D = A,

(0, 1) otherwise;

and

U(D) = (U1(D),U2(D)) =

 (1, 0) if D = 0, 1,
( 12 ,

1
3 ) if D = B,C,B ∩ C,B ∪ C,

(0, 1) otherwise.

Then clearly T and U are SoIFTs on X. Consider a mapping g : (X, T ) →
(X,U) defined by g(x) = x, g(y) = y, and g(z) = z. Then g is fuzzy strongly
( 12 ,

1
3 )-preopen, but g is neither fuzzy ( 12 ,

1
3 )-open nor fuzzy strongly ( 12 ,

1
3 )-

semiopen.

Example 2.4. Let X = {x, y, z} and let A and B be intuitionistic fuzzy sets
in X defined as

A(x) = (0.3, 0.6), A(y) = (0.1, 0.8), A(z) = (0.7, 0.2);

and
B(x) = (0.8, 0.1), B(y) = (0.8, 0.1), B(z) = (0.4, 0.5).

Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (D) = (T1(D), T2(D)) =

 (1, 0) if D = 0, 1,
( 12 ,

1
3 ) if D = A,

(0, 1) otherwise;

and

U(D) = (U1(D),U2(D)) =

 (1, 0) if D = 0, 1,
( 12 ,

1
3 ) if D = B,

(0, 1) otherwise.

Then clearly T and U are SoIFTs on X. Consider a mapping g : (X, T ) →
(X,U) defined by g(x) = x, g(y) = y, and g(z) = z. Then g is fuzzy ( 12 ,

1
3 )-

preopen, but g is not a fuzzy strongly ( 12 ,
1
3 )-preopen mapping.

Theorem 2.5. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then the following statements are
equivalent:
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(1) f is a fuzzy strongly (r, s)-preopen mapping.
(2) For each intuitionistic fuzzy set A in X,

f(int(A, r, s)) ⊆ stpint(f(A), r, s).

(3) For each intuitionistic fuzzy set B in Y ,

int(f−1(B), r, s) ⊆ f−1(stpint(B, r, s)).

(4) For each intuitionistic fuzzy set B in Y ,

f−1(stpcl(B, r, s)) ⊆ cl(f−1(B), r, s).

(5) For each intuitionistic fuzzy set A in X,

f(int(A, r, s)) ⊆ int(pcl(f(A), r, s), r, s).

Proof. (1) ⇒ (2) Let A ∈ I(X). Then int(A, r, s) is a fuzzy (r, s)-open set in
X. Since f is fuzzy strongly (r, s)-preopen, f(int(A, r, s)) is a fuzzy strongly
(r, s)-preopen set in Y . From the result f(int(A, r, s)) ⊆ f(A), we have

f(int(A, r, s)) = stpint(f(int(A, r, s)), r, s) ⊆ stpint(f(A), r, s).

(2) ⇒ (3) Let B ∈ I(Y ). Then f−1(B) ∈ I(X). By (2), we obtain

f(int(f−1(B), r, s)) ⊆ stpint(f(f−1(B)), r, s) ⊆ stpint(B, r, s).

Thus int(f−1(B), r, s) ⊆ f−1(stpint(B, r, s)).
(3) ⇒ (1) Let A be a fuzzy (r, s)-open set in X. Then f(A) ∈ I(Y ). By (3),

we have

int(A, r, s) ⊆ int(f−1(f(A)), r, s) ⊆ f−1(stpint(f(A), r, s)).

Thus f(A) = f(int(A, r, s)) ⊆ stpint(f(A), r, s) ⊆ f(A). Hence f(A) =
stpint(f(A), r, s). Therefore f is a fuzzy strongly (r, s)-preopen mapping.

(3) ⇒ (4) Let B ∈ I(Y ). By (3), we obtain

int(f−1(Bc), r, s) ⊆ f−1(stpint(Bc, r, s)).

Hence we have

f−1(stpcl(B, r, s)) = (f−1(stpint(Bc, r, s)))c

⊆ (int(f−1(Bc), r, s))c = cl(f−1(B), r, s).

(4) ⇒ (3) Let B ∈ I(Y ). By (4), we obtain

f−1(stpcl(Bc, r, s)) ⊆ cl(f−1(Bc), r, s).

Thus we have

int(f−1(B), r, s) = (cl(f−1(Bc), r, s))c

⊆ (f−1(stpcl(Bc, r, s)))c = f−1(stpint(B, r, s)).

(1)⇒(5) Suppose that f is fuzzy strongly (r, s)-preopen. Then f(int(A, r, s))
is a fuzzy strongly (r, s)-preopen set in Y . Hence

f(int(A, r, s)) ⊆ int(pcl(f(int(A, r, s)), r, s), r, s)

⊆ int(pcl(f(A), r, s), r, s).
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(5) ⇒ (1) Let A be a fuzzy (r, s)-open set in X. Then by hypothesis,
f(A) = f(int(A, r, s)) ⊆ int(pcl(f(A), r, s), r, s). Thus f(A) is a fuzzy strongly
(r, s)-preopen set in Y . Therefore f is fuzzy strongly (r, s)-preopen. □

Theorem 2.6. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then the following statements are
equivalent:

(1) f is fuzzy strongly (r, s)-preclosed.
(2) For each intuitionistic fuzzy set A in X,

stpcl(f(A), r, s) ⊆ f(cl(A, r, s)).

(3) For each intuitionistic fuzzy set A in X,

cl(pint(f(A), r, s), r, s) ⊆ f(cl(A, r, s)).

Proof. (1) ⇒ (2) Suppose that f is fuzzy strongly (r, s)-preclosed. Let A ∈
I(X). Then f(cl(A, r, s)) is a fuzzy strongly (r, s)-preclosed set in Y . Since
f(A) ⊆ f(cl(A, r, s)), we have

stpcl(f(A), r, s) ⊆ stpcl(f(cl(A, r, s)), r, s) = f(cl(A, r, s)).

(2) ⇒ (1) Let A be a fuzzy (r, s)-closed set in X. According to the assump-
tion,

f(A) ⊆ stpcl(f(A), r, s) ⊆ f(cl(A, r, s)) = f(A).

Thus f(A) = stpcl(f(A), r, s). Hence f(A) is fuzzy strongly (r, s)-preclosed in
Y . Therefore f is a fuzzy strongly (r, s)-preclosed mapping.

(1) ⇒ (3) Let f be fuzzy strongly (r, s)-preclosed. Then f(cl(A, r, s)) is
fuzzy strongly (r, s)-preclosed in Y . Hence

cl(pint(f(A), r, s), r, s) ⊆ cl(pint(f(cl(A, r, s)), r, s), r, s)

⊆ f(cl(A, r, s)).

(3) ⇒ (1) Let A be a fuzzy (r, s)-closed set in X. According to the assump-
tion, we obtain

cl(pint(f(A), r, s), r, s) ⊆ f(cl(A, r, s)) = f(A).

Hence f(A) is fuzzy strongly (r, s)-preclosed in Y . Therefore f is a fuzzy
strongly (r, s)-preclosed mapping. □

Theorem 2.7. Let f : (X, T1, T2) → (Y,U1,U2) be a bijective mapping from
a SoIFTS X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is fuzzy strongly
(r, s)-preopen if and only if it is fuzzy strongly (r, s)-preclosed.

Proof. Straightforward. □

Theorem 2.8. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then the following statements are true:

(1) If f(int(pcl(A, r, s), r, s)) ⊆ int(pcl(f(A), r, s), r, s) for each fuzzy (r, s)-
open set A in X, then f is a fuzzy strongly (r, s)-preopen mapping.
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(2) If f(cl(pint(A, r, s), r, s)) ⊇ cl(pint(f(A), r, s), r, s) for each fuzzy (r, s)-
closed set A in X, then f is a fuzzy strongly (r, s)-preclosed mapping.

Proof. (1) Let A be a fuzzy (r, s)-open set in X. Then

A ⊆ int(pcl(A, r, s), r, s).

By hypothesis, we have

f(A) ⊆ f(int(pcl(A, r, s), r, s)) ⊆ int(pcl(f(A), r, s), r, s),

and hence f(A) is a fuzzy strongly (r, s)-preopen set in Y . Thus f is a fuzzy
strongly (r, s)-preopen mapping.

(2) Similar to (1). □

Theorem 2.9. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is fuzzy strongly (r, s)-preopen if
and only if for each intuitionistic fuzzy set B in Y and each fuzzy (r, s)-closed
set A in X with f−1(B) ⊆ A, there is a fuzzy strongly (r, s)-preclosed set C in
Y such that B ⊆ C and f−1(C) ⊆ A.

Proof. Let B be any intuitionistic fuzzy set in Y and A a fuzzy (r, s)-closed set
inX with f−1(B) ⊆ A. Then Ac ⊆ f−1(Bc), and hence f(Ac) ⊆ f(f−1(Bc)) ⊆
Bc. Since f is fuzzy strongly (r, s)-preopen and Ac is fuzzy (r, s)-open, we
have f(Ac) ⊆ stpint(Bc, r, s). Thus Ac ⊆ f−1(f(Ac)) ⊆ f−1(stpint(Bc, r, s)).
Hence A ⊇ f−1(stpcl(B, r, s)). Let C = stpcl(B, r, s). Then C is fuzzy strongly
(r, s)-preclosed in Y such that B ⊆ C and f−1(C) ⊆ A.

Conversely, let A be a fuzzy (r, s)-open set in X. Then Ac ⊇ (f−1(f(A)))c =
f−1(f(A)c), where Ac is fuzzy (r, s)-closed. According to the assumption,
there is a fuzzy strongly (r, s)-preclosed set B in Y such that f(A)c ⊆ B and
f−1(B) ⊆ Ac. From f(A)c ⊆ B follows stpcl(f(A)c, r, s) ⊆ stpcl(B, r, s) =
B, and hence Bc ⊆ stpcl(f(A)c, r, s)c = stpint(f(A), r, s). Since f−1(B) ⊆
Ac, we have f−1(Bc) ⊇ A, so Bc ⊇ f(f−1(Bc)) ⊇ f(A). Thus f(A) =
stpint(f(A), r, s). Hence f(A) is a fuzzy strongly (r, s)-preopen set in Y . There-
fore f is fuzzy strongly (r, s)-preopen. □

Corollary 2.10. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. If f is a fuzzy strongly (r, s)-preopen
mapping, then for each intuitionistic fuzzy set B in Y ,

f−1(cl(pint(B, r, s), r, s)) ⊆ cl(f−1(B), r, s).

Proof. Let B be an intuitionistic fuzzy set in Y . Then cl(f−1(B), r, s) is fuzzy
(r, s)-closed in X containing f−1(B). By Theorem 2.9, there is a fuzzy strongly
(r, s)-preclosed set C in Y such that B ⊆ C and f−1(C) ⊆ cl(f−1(B), r, s).
Hence

f−1(cl(pint(B, r, s), r, s)) ⊆ f−1(cl(pint(C, r, s), r, s))

⊆ f−1(C) ⊆ cl(f−1(B), r, s). □
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Theorem 2.11. Let f : (X, T ) → (Y,U) and g : (Y,U) → (Z,S) be mappings
and (r, s) ∈ I⊗I. If g is fuzzy strongly (r, s)-preopen and f is fuzzy (r, s)-open,
then g ◦ f is fuzzy strongly (r, s)-preopen.

Proof. Straightforward. □
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