References
-
S.-Y. Chung and C. A. Berenstein,
$\omega$ -harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math. 65 (2005), no. 4, 1200-1226. https://doi.org/10.1137/S0036139903432743 - S.-Y. Chung and J. H. Kim, The p-Laplacian and the uniqueness of inverse problems on nonlinear networks, preprint.
- E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), no. 1-3, 115-150. https://doi.org/10.1016/S0024-3795(98)10087-3
- E. B. Curtis, E. Mooers, and J. A. Morrow, Finding the conductors in circular networks from boundary measurements, RAIRO Model. Math. Anal. Numer. 28 (1994), no. 7, 781-814. https://doi.org/10.1051/m2an/1994280707811
- E. B. Curtis and J. A. Morrow, Determining the resistors in a network, SIAM J. Appl. Math. 50 (1990), no. 3, 918-930. https://doi.org/10.1137/0150055
- E. B. Curtis and J. A. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math. 51 (1991), no. 4, 1011-1029. https://doi.org/10.1137/0151051
- D. Ingerman and J. A. Morrow, On a characterization of the kernel of the Dirichlet-to- Neumann map for a planar region, SIAM J. Math. Anal. 29 (1998), no. 1, 106-115. https://doi.org/10.1137/S0036141096300483
- J.-H. Park, J.-H. Kim, and S.-Y. Chung, The p-Schrodinger equations on finite networks, Publ. Res. Inst. Math. Sci. 45 (2009), 363-381. https://doi.org/10.2977/prims/1241553123