References
- I. K. Argyros, Convergence theorems for Newton-like methods without Lipschitz condi- tions, Comm. Appl. Nonlinear Anal. 9 (2002), no. 3, 103-111.
- I. K. Argyros, On a theorem of L. V. Kantorovich concerning Newton's method, J. Comput. Appl. Math. 155 (2003), no. 2, 223-230. https://doi.org/10.1016/S0377-0427(02)00865-8
- I. K. Argyros, Unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
- I. K. Argyros, Computational theory of iterative methods, Studies in Computational Mathematics, 15. Elsevier B. V., Amsterdam, 2007.
- E. Catinas, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), no. 1, 47-53.
- X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solv- ing nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 37-48. https://doi.org/10.1080/01630568908816289
- W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier, Science B.V., Amsterdam, 2003.
- L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
- P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity 26 (2010), no. 1, 3-42. https://doi.org/10.1016/j.jco.2009.05.001
- M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden Day Inc., London, 1964.
- P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton- Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim. 9 (1987), no. 5-6, 671-684. https://doi.org/10.1080/01630568708816254
- A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators, Dopovidi Akad. Nauk Ukrain. RSR 1963 (1963), 156-161.