DOI QR코드

DOI QR Code

ON THE CONVERGENCE OF A NEWTON-LIKE METHOD UNDER WEAK CONDITIONS

  • Argyros, Ioannis K. (Department of Mathematical Sciences Cameron University) ;
  • Ren, Hongmin (Department of Information and Electronics Hangzhou Radio and TV University)
  • Received : 2010.04.17
  • Published : 2011.10.31

Abstract

We provide a semilocal convergence analysis for a Newtonlike method under weak conditions in a Banach space setting. In particular, we only assume that the Gateaux derivative of the operator involved is hemicontinuous. An application is also provided.

Keywords

References

  1. I. K. Argyros, Convergence theorems for Newton-like methods without Lipschitz condi- tions, Comm. Appl. Nonlinear Anal. 9 (2002), no. 3, 103-111.
  2. I. K. Argyros, On a theorem of L. V. Kantorovich concerning Newton's method, J. Comput. Appl. Math. 155 (2003), no. 2, 223-230. https://doi.org/10.1016/S0377-0427(02)00865-8
  3. I. K. Argyros, Unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
  4. I. K. Argyros, Computational theory of iterative methods, Studies in Computational Mathematics, 15. Elsevier B. V., Amsterdam, 2007.
  5. E. Catinas, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), no. 1, 47-53.
  6. X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solv- ing nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 37-48. https://doi.org/10.1080/01630568908816289
  7. W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier, Science B.V., Amsterdam, 2003.
  8. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
  9. P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity 26 (2010), no. 1, 3-42. https://doi.org/10.1016/j.jco.2009.05.001
  10. M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden Day Inc., London, 1964.
  11. P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton- Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim. 9 (1987), no. 5-6, 671-684. https://doi.org/10.1080/01630568708816254
  12. A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators, Dopovidi Akad. Nauk Ukrain. RSR 1963 (1963), 156-161.