DOI QR코드

DOI QR Code

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul (Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University)
  • 투고 : 2011.06.19
  • 심사 : 2011.07.25
  • 발행 : 2011.10.28

초록

Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.

키워드

참고문헌

  1. C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner: Phys. Rev. B., 59 (1999) 8615. https://doi.org/10.1103/PhysRevB.59.8615
  2. W. Jeitschko: Metall. and Mater. Trans. B, 1(11) (1970) 1073.
  3. S. Katsuyama, R. Matsuo and M. Ito: J. Alloys and Comp., 428 (2007) 262. https://doi.org/10.1016/j.jallcom.2006.02.075
  4. J. Tabola and J. Pierre: J. Alloys and Comp., 296 (2000) 243. https://doi.org/10.1016/S0925-8388(99)00549-6
  5. C. Yu, T.-J. Zhu, R.-Z. Xhi, Y. Zhang, X.-B. Zhao and J. He: Acta Mater., 57 (2009) 2757. https://doi.org/10.1016/j.actamat.2009.02.026
  6. D. Fruchart, V. A. Romaka, Y. V. Stadnyk, L. P. Romaka, Y. K. Gorelenko, M. G. Shelyapina and V. F. Chekerin: J. of Alloys and Comp., 438 (2007) 8. https://doi.org/10.1016/j.jallcom.2006.08.001
  7. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L Pope, S. J. Poon and T. M. Tritt: J. of Appl. Phy., 88(4) (2000) 1952. https://doi.org/10.1063/1.1305829
  8. I.-H. Kim, J.-C. Kwon, Y.-G. Lee, M.-S. Yoon, S.-L. Ryu, W.-G. Kim and S.-C. Ur: Materials Science Forum, 658 (2010) 33. https://doi.org/10.4028/www.scientific.net/MSF.658.33
  9. S.-C. Ur, J.-C. Kwon and I.-H. Kim: J. of Alloys and Comp., 442 (2007) 358. https://doi.org/10.1016/j.jallcom.2006.08.369
  10. K. Kurosaki, H. Muta and S. Yamanaka: J. of Alloys and Comp., 384 (2004) 51. https://doi.org/10.1016/j.jallcom.2004.03.128
  11. D. Mandrus, A. Migliori, T. W Darling, M. F. Hundley, E. J. Peterson and J. D. Thompson: Phys. Rev., B52 (1995) 4926.