• Title/Summary/Keyword: Zr-Ni-Sn

Search Result 32, Processing Time 0.02 seconds

Improvement of Glass Forming Ability of Ni-Zr-Ti Alloys by Addition of Si and Sn

  • Lee, Jin-Kyu;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.286-290
    • /
    • 2003
  • 본 연구에서는 Ni-Zr-Ti의 3원계 합금을 기본으로 하여, Si 및 Sn 등의 원소를 첨가하여 Ni-rich 영역에서 벌크 비정질 합금을 제조하였다. $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 조성의 합금에서 injection casting에 의하여 약 58 K의 과냉각액상영역을 가지고 있는 직경 3 mm의 벌크 비정질 시편을 제조하였다. 이러한 우수한 비정질 형성능은 액상온도의 저하로 인해 낮은 온도까지 액상이 쉽게 과냉되기 때문인 것으로 사료된다. $Ni_{59}Zr_{20}Ti_{16}Si_5$ 합금은 두 단계에 걸쳐 결정화가 일어나는 반면, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 합금은 단일 단계에 의해 orthorhombic $Ni_{10}{(Zr,Ti)}_7$ 결정상과 cubic NiTi 결정상으로 결정화가 일어난다. 벌크 비정질 $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 합금의 경우 압충강도는 2.7 GPa, 연신율은 약 2% 정도의 값을 가진다.

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.401-405
    • /
    • 2011
  • Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.

The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys (커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과)

  • Han, Seung-Zeon;Kong, Man-Shik;Kim, Sang-Shik;Kim, Chang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy (알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying (비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동)

  • Yoon, Sang-Hoon;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

Microwave Dielectric Properties of $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ Ceramics according to Doped NiO and Sintering Temperature ($(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ 세라믹스의 NiO 첨가량 및 소결온도에 따른 고주파 유전특성)

  • Yun, J.R.;Heung, S.Y.;Lee, H.Y.;Kweon, J.Y.;Kim, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1487-1489
    • /
    • 1994
  • $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ system which has a dielectric constant, low dielectric loss and temperature coefficient was investigated. Temperature coefficient varied from positive to negative with increasing of NiO. For the NiO content 1.0wt%. i.e $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$, the ceramic showed very good dielectric properties such as ${\epsilon}$=37.8, $Q{\times}f_o=49.000$ and ${\tau}_r= 4{\pm}1ppm/^{\circ}C$.

  • PDF

Sintering of Ni-Based Amorphous Alloy Powders by Plasma Activated Sintering Process (PAS법을 이용한 Ni기 비정질 분말의 소결)

  • Koo, Ja-Min;Shin, Kee-Sam;Kim, Yoon-Bae;Bae, Jong-Soo;Hur, Sung-Kang
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.765-772
    • /
    • 2005
  • PAS(Plasma Activated Sintering) process was tried to apply for the fabrication of BMG(Bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5}\;and\;Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ from the as-atomized amorphous powder. Compressive strength for the BMG(bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5$ were lower than those of BMG rods produced by warm extrusion ,or copper mold casting method. Microstructural examination by optical microcope, SEM ana EDS showed that oxidation had occurred during PASintering. In order to prevent the powder from the oxidation during PASintering, Ni coating for $Ni_{57}Zr_{20}Ti_{18}Si_5$ amorphous powder by electroless-plating method was performed. Microstructural examination for Ni coated layers after PASintering indicated that the Ni coating had been so effective to prevent powder from oxidation during PASintering. Sintering behaviors of $Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ represent the same as those of $Ni_{57}Zr_{20}Ti_{18}Si_5$.

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Effects of Amorphous Phase Fraction on the Scratch Response of NiTiZrSiSn Bulk Meatllic Glass in the Kinetic Spraying Process (저온분사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅의 비정질 분율에 따른 스크래치 반응)

  • Yoon, Sang-Hoon;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.28-36
    • /
    • 2007
  • A bulk amorphous NiTiZrSiSn powder produced using an inert gas atomization was sprayed by kinetic spraying process that is basically a solid-state deposition process onto a mild steel substrate. They were successfully overlaid onto the mild steel substrate. In order to evaluate the tribological behavior of the kinetic sprayed NiTiZrSiSn BMG (Bulk Metallic Glass) coatings, a partially crystallized coating and a fully crystallized coating were prepared by the isothermal heat treatments. Tribological behaviors were investigated in view of friction coefficient, hardness and amorphous phase fraction of coating layer. Surface morphologies and depth in the wear tracks were observed and measured by scanning electron microscope and alpha-step. From the examination of the scratch wear track microstructure, transition from the ductile like deformation (micro cutting) to the brittle deformation (micro fracturing) in the scratch groove was observed with the increase of the crystallinity.

Vacuum Plasma Sprayed NiTiZrSiSn Coating (진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성)

  • Yoon, Sang-Hoon;Kim, June-Seob;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.