Monte Carlo방법을 이용한 Germanium 기판의 결공형 클러스터링 형성에 대한 연구

A Study of Germanium Substrate Vacancy Clustering Formation using Monte Carlo Method

  • 이준하 (상명대학교 컴퓨터시스템공학과)
  • Lee, Jun-Ha (Department of Computer System Engineering, Sangmyung University)
  • 투고 : 2011.05.05
  • 심사 : 2011.05.31
  • 발행 : 2011.06.30

초록

In this paper, vacancy clustering formation and diffusion of germanium substrate was studied. The analysis method was adopted Monte Carlo method. At temperatures higher than melting point, fewer clusters formed, but there was less variation in the number of clusters than at lower temperatures, as the time increased. Equilibrium diffusivities in the clustering region were $10^2$ lower than those of free vacancies in the initial stage of kinetic lattice Monte Carlo simulations. They were expressed according to three temperature regimes: at temperatures above 1,100 K, at temperatures of 1,100-900 K, and at temperatures below 900 K. The effective mean migration energy, 1.1 eV, closely coincided with that of the 1.0-1.2 eV in experiments.

키워드

참고문헌

  1. Solomon Assefa, Fengnian Xia and Yurii A. Vlasov, "Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects", Nature 464, pp. 80-84, 2010 https://doi.org/10.1038/nature08813
  2. A. Chroneos, R.W. Grimes, and C. Tsamis, Atomic scale simulations of arsenic-vacancy complexes in germanium and silicon, Mater. Sci. Semicon. Proc. 9, pp. 536-540, 2006. https://doi.org/10.1016/j.mssp.2006.08.059
  3. P. Spiewak, M. Muzyk, K.J. $Kurzyd^{3}owski$, J. Van-hellemont, K. $M^{3}ynarczyk$, P. Wabinski, and I. Romandic, Molecular dynamics simulation of intrinsic point defects in germanium, J. Cryst. Growth 303, pp. 12-17, 2007. https://doi.org/10.1016/j.jcrysgro.2006.11.316
  4. S. Hens, J. Vanhellemont, D. Poelman, P. Clauws, I. Romandic, A. Theuwis, and F. Holsteyns, J. Van Steenbergen, Experimental and theoretical evidence for vacancy-clustering-induced large voids in Czochralski-grown germanium crystals, Appl. Phys. Lett. 87, p. 061915, 2005. https://doi.org/10.1063/1.2009830
  5. J. Vanhellemont, O. De Gryse, S. Hens, P. Vanmeerbeek, D. Poelman, P. Clauws, E. Simoen, C. Claeys, I. Romandic, A. Theuwis, G. Raskin, H. Vercammen, and P. Mijlemans, Grown-in lattice defects and diffusion in Czochralski-grown germanium, Defect Diffus. Forum 230-232, pp. 149-176, 2004 https://doi.org/10.4028/www.scientific.net/DDF.230-232.149
  6. P. Spiewak, K.J. $Kurzyd^{3}owski$, J. Vanhellemont, P. Clauws, P. Wabinski, K. $M^{3}ynarczyk$, I. Romandic, and A. Theuwis, Simulation of intrinsic point defect properties and vacancy clustering during Czochralski germanium crystal growth, Mater. Sci. Semicon. Proc. 9, pp. 465-470, 2006. https://doi.org/10.1016/j.mssp.2006.08.003
  7. B.P. Hale, K.M. Beardmore, and M. Gronbech-Jensen, Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations, Phys. Rev. B 74, 045217, 2006. https://doi.org/10.1103/PhysRevB.74.045217
  8. L. Pelaz, L.A. Marques, M. Aboy, and J. Barbolla, Atomistic modeling of amorphization and recrystallization in silicon, Appl. Phys. Lett. 82, pp. 2038-2040. 2003. https://doi.org/10.1063/1.1564296
  9. J. Dai, W.D. Seider, and T. Sinno, Lattice kinetic Monte Carlo simulations of defect evolution in crystals at elevated temperature, Mol. Simulat. 32, pp. 305-314, 2006. https://doi.org/10.1080/08927020600586557