DOI QR코드

DOI QR Code

일방향응고시킨 Pivalic Acid-Ethanol 계에서의 Dendrite의 성장

Growth of Dendrites in the Unidirectionally Solidified Pivalic Acid-Ethanol System

  • 석명진 (강원대학교 재료금속공학과) ;
  • 박영민 (강원대학교 재료금속공학과)
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Park, Young-Min (Department of Materials and Metallurgical Engineering, Kangwon National University)
  • 투고 : 2011.06.02
  • 심사 : 2011.07.04
  • 발행 : 2011.08.30

초록

Transparent organic materials have been frequently used as an analog of the solidifying metallic materials, because their transparency permits an in-situ observation of the microstructural development during solidification through optical microscopy. Pivalic acid (PVA)-ethanol system showing an anisotropic property in solid-liquid interfacial energy and interface kinetics was adopted in the present experiment, and the detailed experiments performed are as follows: (1) variation of dendrite tip temperature with growth velocity, (2) correlation between primary dendrite arm spacing (${\lambda}_1$) and the growth orientation away from the heat flow direction (tilt angle: ${\theta}$), (3) variation of dendrite tip radius (R) with growth velocity (V), (4) dendrite tip stability parameter (${\sigma}^*$) and its dependence on the concentration. Concerning the correlation between the dendrite tip temperature and growth velocity the present result is well suited to Hunt-Lu equation. As the tilt angle increases, the average primary dendrite spacing tends to increase.

키워드

참고문헌

  1. A. Karma and W-J. Rappel: Phys. Rev. E, "Quantitative phase-field modeling of dendritic growth in two and three dimensions", 57 (1998) 4323-4349 https://doi.org/10.1103/PhysRevE.57.4323
  2. S. G. Kim and W. T. Kim: Trends in Metals and Materials Eng., "Phase-field modeling of microstructure", 18(2) (2005) 37-48
  3. M. J. Suk and K. Leonartz: J. Crystal Growth, "Halo growth during unidirectional solidification of camphor-naphthalene eutectic system", 213 (2000) 141-149 https://doi.org/10.1016/S0022-0248(00)00357-2
  4. M. J. Suk, Y. M. Park and Y. D. Kim: Scripta Mater., "Dendrite spacing and microstructure evolution dependent on specimen history", 57 (2007) 985-987 https://doi.org/10.1016/j.scriptamat.2007.08.013
  5. M. J. Suk, Y. M. Park and Y. C. Kim: J. Mater. Sci. Technol., "Dendrite spacing selection during directional solidification of pivalic acid-ethanol system", 24 (2008) 340-342
  6. M. J. Suk and S. Liu: Metals and Materials Int., "Oscillatory growth of nonfaceted dendrite and faceted plate during unidirectional solidification", 15 (2009) 379-383 https://doi.org/10.1007/s12540-009-0379-y
  7. W. Kurz and D. J. Fisher: "Fundamentals of Solidification", 4th Ed., Trans Tech Publ. (1998)
  8. M. E. Glicksman and N. B. Singh: Rapidly Solidified Powder Aluminum Alloys (ASTM STP 890) (eds. M. E. Fine and E. A. Starke, Jr.), "Microstructural scaling laws for dendritically solidified aluminum alloys", American Society for Testing and Materials, Philadelphia (1986), 44-61
  9. J. Crystal Growth, "Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics", 98 (1989) 277-284 https://doi.org/10.1016/0022-0248(89)90142-5
  10. G. P. Ivantsov: "Temperature field around spheroidal, cylindrical and acicular crystal growing in a supercooled melt" (translated from russian), Dokl. Akad. Nauk SSSR 58 (1947) 567-569
  11. R. Trivedi and A. Karma: Encyclopedia of Applied Physics, "Whiskers and dendrites" Vol. 23, Wiley-VCH Verlag, Berlin (1998), 441-459
  12. M. E. Glicksman and S. P. Marsh: Handbook of Crystal Growth, "The dendrite", Vol. 1 (ed. D. T. J. Hurle), Elsevier Science Publishers B.V., (1993), 1075-1122
  13. A. Karma and W-J. Rappel: J. Crystal Growth, "Phase-field simulation of three-dimensional dendrites: is microscopic solvability theory correct?", 174 (1997) 54-64 https://doi.org/10.1016/S0022-0248(96)01060-3
  14. E. R. Rubinstein and M. E. Glicksman: J. Crystal Growth, "Dendritic grown kinetics and Structure I. pivalic acid" 112 (1991) 84-96 https://doi.org/10.1016/0022-0248(91)90914-Q
  15. R. Trivedi and J. T Mason: Metall. Trans. A, "The effects of interface attachment kinetics on solidification interface morphology" 22A (1991) 235-249
  16. M. J. Suk, Y. M. Park, S. T. Oh and S. Y. Chang: J. Kor. Inst. Met. & Mater., "Dendrite tip shapes of pivalic acid-ethanol and succinonitrile-salol systems", 49 (2011) 570-576 https://doi.org/10.3365/KJMM.2011.49.7.570
  17. J. D. Hunt and S.-Z. Lu: Metall. Mater. Trans. A, "Numerical modeling of cellular/dendritic array growth: spacing and structure prediction", 27A (1996) 611-623
  18. R. N. Grugel and Y. Zhou: Metall. Trans. A, "Primary dendrite spacing and the effect of off-axis heat flow" 20A (1989) 969-973
  19. T. Okamoto and K. Kishitake, I. Bessho: J. Crystal Growth, "Dendritic structure in unidirectionally solidified cyclohexanol", 29 (1975) 131-136 https://doi.org/10.1016/0022-0248(75)90216-X
  20. J.S. Langer and H. Muller-Krumbhaar: Acta Metall., "Theory of dendritic growth I. elements of a stability analysis" 26 (1978) 1681-1696 https://doi.org/10.1016/0001-6160(78)90078-0
  21. Y. M. Park: M.Sc. Thesis, "A Study on the development of dendritic and cellular microstructure in the unidirectional solidification using model transparent organic materials", Kangwon National Univ., Samcheok, Korea, (2007)