• 제목/요약/키워드: Anisotropic interface property

검색결과 5건 처리시간 0.015초

유사등방성과 이방성 이종재료 내의 V-노치 균열에 대한 응력특이성에 관한 연구 (A Study on Stress Singularities for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials)

  • 조상봉;김진광
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.152-163
    • /
    • 1999
  • The problem of eigenvalue and eigenvector for v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was obtained to discuss stress singularities from traction free boundary and perfect bonded interface conditions assuming like the form of complex stress function for v-notched cracks in an isotropic material. Eigenvalues were solved by a commercial numerical program, MATHEMATICA. The relation between wedged angle and material property for eigenvalue, ${\lambda}$ indicating stress singularities of v-notched cracks in pseudo-isotropic and anisotropic dissimilar materials was examined.

  • PDF

일방향응고시킨 Pivalic Acid-Ethanol 계에서의 Dendrite의 성장 (Growth of Dendrites in the Unidirectionally Solidified Pivalic Acid-Ethanol System)

  • 석명진;박영민
    • 한국주조공학회지
    • /
    • 제31권4호
    • /
    • pp.191-197
    • /
    • 2011
  • Transparent organic materials have been frequently used as an analog of the solidifying metallic materials, because their transparency permits an in-situ observation of the microstructural development during solidification through optical microscopy. Pivalic acid (PVA)-ethanol system showing an anisotropic property in solid-liquid interfacial energy and interface kinetics was adopted in the present experiment, and the detailed experiments performed are as follows: (1) variation of dendrite tip temperature with growth velocity, (2) correlation between primary dendrite arm spacing (${\lambda}_1$) and the growth orientation away from the heat flow direction (tilt angle: ${\theta}$), (3) variation of dendrite tip radius (R) with growth velocity (V), (4) dendrite tip stability parameter (${\sigma}^*$) and its dependence on the concentration. Concerning the correlation between the dendrite tip temperature and growth velocity the present result is well suited to Hunt-Lu equation. As the tilt angle increases, the average primary dendrite spacing tends to increase.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF

Effective Properties of Multi-layered Multi-functional Composites

  • Kim, Byeong-Chan;Baltazar, Arturo;Kim, Jin-Yeon
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.153-166
    • /
    • 2009
  • A matrix method for evaluating effective electro-magneto-thermo-elastic properties of a generally anisotropic multilayered composite is presented. Physical variables are categorized into two groups: one that satisfies the continuity across the interface between layers and another that satisfies an average inter-layer compatibility (which is also exact). The coupled electro-magneto-thermo-elastic constitutive equation is accordingly reassembled into submatrices, which leads to the derivation of concise and exact matrix expressions for effective properties of a multilayered composite having the coupled physical effects. Comparing the results for a purely elastic multiplayer with those from other theoretical approaches validates the developed method. Examples are given for a PZT-graphite/epoxy composite and a $BaTiO_3-CoFe_2O_4$ multiplayer which exhibit piezo-thermoelastic and magnetoelectric properties, respectively. The result shows how a strong magnetoelectric effect can be achieved by combining piezoelectric and piezomagnetic materials in a multilayered structure. The magnetoelectric coefficient of the $BaTiO_3-CoFe_2O_4$ multiplayer is compared with those for fibrous and particulate composites fabricated with the same constituents.