DOI QR코드

DOI QR Code

일일초에서의 기능획득 돌연변이 모상근의 대량생산

Mass Production of Gain-of-Function Mutants of Hairy Roots in Catharanthus roseus

  • 고석민 (제주대학교 아열대 원예산업연구소) ;
  • 정화지 ((주)젠닥스) ;
  • 이효연 (제주대학교 아열대 원예산업연구소)
  • Ko, Suk-Min (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Chung, Hwa-Jee (Gendocs Inc.) ;
  • Lee, Hyo-Yeon (Subtropical Horticulture Research Institute, Jeju National University)
  • 투고 : 2011.07.14
  • 심사 : 2011.08.23
  • 발행 : 2011.10.31

초록

본 연구는 아그로박테리움을 이용한 기능획득 일일초 모상근의 대량생산을 위한 조건 확립에 대한 것이다. 본 연구에서는, 효율적인 형질전환 일일초 모상근 생산에 있어서의 최적의 일일초 품종의 선발과 최적의 일일초 조직을 결정하였으며, 또한 다양한 배지에 있어서의 모상근 유도를 조사하였다. 최종적으로 약 2,500개의 독립적인 형질전환 일일초 모상근 line을 생산하였으며, 또한 이들을 이용하여, 대사체 연구를 위한 효율적 관리 시스템을 구축하였다. 이들 모상근 line은 일일초 인돌알칼로이드 생합성 관련 유전자의 발굴 및 기능해석에 유용하게 쓰일 것이다.

This study describes conditions for the mass production of mutant hairy root lines by co-cultivation with A. rhizogenes harboring the activation tagging vector pHC7. Various sources of explants were subjected to genetic transformation with A. rhizogenes to determine optimum conditions and cultivar for the highest frequency of hairy root formation on explants. Hairy root formation also were investigated in transformed hairy roots grown in various culture media. Finally, a total of approximately 2,500 lines of hairy root mutants were produced in this study. A managing system for metabolomics in hairy root lines also were established. These hairy root lines will be useful to determine functions of genes relating biosynthesis pathway of secondary metabolites.

키워드

참고문헌

  1. Bhadra, R., S. Vani and J.V. Shanks. 1993. Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol. Bioeng. 41:581-592. https://doi.org/10.1002/bit.260410511
  2. Bouchez, D. and H. Hofte. 1998. Functional genomics in plants. Plant Physiol. 118:725-732. https://doi.org/10.1104/pp.118.3.725
  3. Busov, V., Y. Yordanov, J. Gou, R. Meilan, C. Ma, S. Regan and S. Strauss. 2011. Activation tagging is an effective gene tagging is an effective gene tagging system in Populus. Tree Genet.Gen. 7(1):91-101. https://doi.org/10.1007/s11295-010-0317-7
  4. Choi, P.S., Y.D. Kim, K.M. Choi, H.J. Chung, D.W. Choi and J.R. Liu. 2004. Plant regeneration from hairy root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep. 22:828-831. https://doi.org/10.1007/s00299-004-0765-3
  5. Favretto, D., A. Piovan, R. Filippini, R. Caniato. 2001. Monitoring the production yields of vincristine and vinblastine in Catharanthus roseus from somatic embryogenesis. Semiquantitative determination by flow-injection electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 15:364-369. https://doi.org/10.1002/rcm.239
  6. Gamborg, O.L., R.A. Miller and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50:151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  7. Jaggi, M., S. Kumar and A.K. Shinha. 2011. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl. Microbiol. Biotechnol. 90:1005-1016. https://doi.org/10.1007/s00253-011-3131-8
  8. Jeong, D.H., S. An, H.G. Kang, S. Moon, J.J. Han, S. Park, H.S. Lee, K. An and G. An. 2002. Plant Physiol. 130:1636-1644. https://doi.org/10.1104/pp.014357
  9. Jung, K-H., S-S. Kwak., C.Y. Choi and J.R. Liu. 1995. Regulation of growth and chatharanthine production by the intracellular phosphate level in hairy root cultures of Catharanthus roseus. Korean J. Plant Tiss. Cul. 22(4):183-187.
  10. Kuromori, T., S. Takahashi, Y. Kondou, K. Shinozaki and M. Masui. 2009. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol. 50:1215-1231. https://doi.org/10.1093/pcp/pcp078
  11. Linsmaier E.M. and F. Skoog. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100-127. https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  12. Lloyd, G.B. and B.H. McCown. 1980. Commercial-feasible micropropagation of mountain laurel-Kalmia latifolia by use of shoot-tip culture. Int. Plant Prop. Soc. Proc. 30:421-427.
  13. Magnotta, M., J. Murata, J. Chen and V. De Luca. 2007. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922-1931. https://doi.org/10.1016/j.phytochem.2007.04.037
  14. Mallol, A., R.M., Cusido, J. Palazon, M. Bonfill, C. Morales and M.T. Pinol. 2001. Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57(3):365-371. https://doi.org/10.1016/S0031-9422(01)00062-0
  15. Mathews, H., S.K. Clendenne, C.G. Coldwell, X.L. Liu, K. Konnors, N. Mathesis, D.K Schuster, D.J. Menasco, W. Wagoner, J. Lightner and D.R. Wagner. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, biosynthesis, modification, and transport. Plant Cell 14:1689-1703.
  16. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Palazon, J., A. Mallol, R. Eibl, C. Lettenbauer, R.M. Cusido and M.T. Pinol. 2003. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med. 69:344-349. https://doi.org/10.1055/s-2003-38873
  18. Schenk. R.U. and A.C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian J. Bot. 50:199-204. https://doi.org/10.1139/b72-026
  19. Seki, H., T. Nishizawa, N. Tanaka, Y. Yasuo, S. Yoshida and T. Muranaka. 2005. Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol. Biol. 59:793-807. https://doi.org/10.1007/s11103-005-1008-x
  20. Tani, H., X. Chen, P. Nurmberg, J.J. Grant, M. SantaMaria, A. Chini, E. Giloy, P.R.J. Birch and G.J. Loake. 2004. Activation tagging in plants: a tool for gene discovery. Funct. Integr. Genomics 4:258-266.
  21. van der Fits, L. and J. Memelink J. 2000. ORCA3, a jasmonateresponsive transcriptional regulator of plant primary and secondary metabolism. Science 289:513-521.
  22. van der Heijden, R., D.I. Jacobs, W. Snoeijer, D. Hallard and R. Verpoorte. 2004. The Chatharanthus alkaloids: pharmacognosy and biotechnology. Curr. Med. Chem. 11:607-628. https://doi.org/10.2174/0929867043455846
  23. Wang, C-T., H. Liu, X-S. Gao and H-X. Zhang. 2010. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves chatharanthine production. Plant Cell Rep. 29:887-894. https://doi.org/10.1007/s00299-010-0874-0
  24. Weigel, D., J.H. Ahn, M.A. Blazquez, J.O. Borevitz, S.K. Christensen, C. Fankhauser, C. Ferrandiz, I. Kardailsky, E.J. Malancharuvil, M.M. Neff, J.T. Nguyen, S. Satio, Z.Y. Wang, Y. Xia, R.A. Dixon, M.J. Harrison, C.J. Lamb, F. Yanofsky and J. Chory. 2000. Activation Tagging in Arabidopsis. Plant Physiol. 122:1003-1013. https://doi.org/10.1104/pp.122.4.1003
  25. Woo, S.S., J.S. Song, J.Y. Lee, D.S. In, H.J. Chung, J.R. Liu and D.W. Choi. 2004. Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochemistry 65:2751-2761. https://doi.org/10.1016/j.phytochem.2004.08.039

피인용 문헌

  1. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization vol.338, pp.11, 2015, https://doi.org/10.1016/j.crvi.2015.05.005