DOI QR코드

DOI QR Code

Design and Analysis of 3D Isotropic Metamaterial Bulk Structure Using Thin Wire and SRR

Thin Wire와 SRR을 이용한 3D 등방성 Metamaterial Bulk 구조 설계 및 분석

  • Kim, Chung-Ju (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Lee, Bom-Son (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 김충주 (경희대학교 전자.전파공학과) ;
  • 이범선 (경희대학교 전자.전파공학과)
  • Published : 2011.09.30

Abstract

In this paper, we designed and analyzed a 3D isotropic bulk structure consisting of thin wires and SRR's(Split Ring Resonator) with which the permittivity and permeability can be controlled at the same time. For the 3D isotropic bulk structure, first of all, the geometry seen by three main axes must look alike. Thus, we adopted the orthogonal thin wires and symmetrical SRR's. As a result, we constructed metamaterial bulk structures of which effective relative permittivity and permiability are about -0.6 and -1.5, respectively. Its refractive index is about -0.95 in each direction(x, y and z direction). The computed Brillouin dispersion diagram also showed that the proposed structure is almost near isotropic.

본 논문에서는 thin wire와 SRR(Split Ring Resonator)을 이용하여 유전율과 투자율을 동시에 제어할 수 있는 3D 등방성 단일 셀을 설계하고 분석해 살펴보았다. 등방성을 갖는 3D bulk 구조를 설계하기 위해서는 모든 면에서 바라본 bulk의 구조 특성이 매우 유사해야 한다. 이러한 구조를 구현하기 위하여 본 논문에서는 thin wire와 상하좌우가 모두 대칭인 SRR 구조를 설계하였으며, 이를 3D bulk 구조에 적용한 결과 8.72 GHz에서 모든 방향(x, y, z방향)에 대하여 유효 상대 유전율이 약 -0.6, 유효 상대 투자율이 약 -1.5, 그리고 굴절율이 -0.95인 3D 등방성 bulk가 설계되었다. 계산된 Brillouin 분산 다이어그램도 제안된 구조가 등방성에 유사하다는 것을 보여주었다.

Keywords

References

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic measostuctures", Phys. Rev. Lett., vol. 76, pp. 4773, 1996. https://doi.org/10.1103/PhysRevLett.76.4773
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures", Phy. Condens. Matter, pp. 4785-4809, 1988.
  3. J. B. Pendry, A. J. Holden, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena", IEEE Tras., vol. 47, pp. 2075-2084, Nov. 1999. https://doi.org/10.1109/22.798002
  4. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and pemeability of metamaterials from reflection and transmission coefficients", Phys. Rev. B., vol. 65, pp. 195104:1-5, Apr. 2002.
  5. D. R. Smith, N. Kroll, "Negative refractive index in left-handed materials", Phys. Rev. Lett., vol. 85, pp. 2933-2936, 2000. https://doi.org/10.1103/PhysRevLett.85.2933
  6. J. Ma, Y. Zeng, and X. Cao, "Analysis of the characteristics in metal-material with negative permittivity", World Automation Congress, pp. 1-4, Sep. 2008.
  7. J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design", Appl. Phys. Lett., vol. 88, no 13, pp. 134108, Mar. 2006. https://doi.org/10.1063/1.2190442
  8. R. Marques, L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, "Bulk metamaterials made of resonant rings", Proceedings of the IEEE, vol. PP, no. 99, Jun. 2011. https://doi.org/10.1109/JPROC.2011.2141970