DOI QR코드

DOI QR Code

Effect of Compositional Ratio of Additives on the Plating Properties in Environment-Friendly Electroless Plating Reaction

친환경 무전해 도금반응에서 첨가제의 조성비가 도금특성에 미치는 영향

  • Received : 2011.07.05
  • Accepted : 2011.09.08
  • Published : 2011.09.30

Abstract

The purpose of this study is to investigate the effect of compositional ratio of additives, such as potassium ferrocyanide, aminoacetic acid (=glycine) and 2,2'-dipyridyl, on the physical properties of copper layer deposited by environment-friendly electroless plating reaction. The highest plating rate of copper layer, $9.5mg{\cdot}cm^{-2}{\cdot}hr^{-1}$, was obtained at 20 mg/L of potassium ferrocyanide and 0.01 mol/L of aminoacetic acid, which coincided with the change in the hardness of the copper layer. In the additives used in this study, potassium ferrocyanide was considered to improve the plating rate, aminoacetic acid increased the hardness value of deposited films and 2,2'-dipyridyl enhanced the brightness of copper deposited films.

시아나이드 화합물과 같은 환경에 유해한 도금첨가제를 사용하지 않는 친환경적인 무전해 구리도금용 도금용액조성을 개발하기 위하여, potassium ferrocyanide, aminoacetic acid (=glycine), 2,2'-dipyridyl과 같은 첨가제를 이용하여 첨가제의 투입량 또는 조성비가 도금특성에 미치는 영향을 조사하였다. 무전해도금으로 적층된 구리도금층의 도금속도는 potassium ferrocyanide와 aminoacetic acid의 조성비가 20 mg/L과 0.01 mol/L 이었을 때, $9.5mg{\cdot}cm^{-2}{\cdot}hr^{-1}$으로 나타났으며, 도금경도의 변화도 도금속도와 연동하여 비례적으로 변화하였다. 하지만 potassium ferrocyanide를 첨가하지 않은 도금용액의 조성에서도 $9.1mmg{\cdot}cm^{-2}{\cdot}hr^{-1}$의 도금속도를 나타내었다.

Keywords

References

  1. T. Kanbe, NP Series Electroless Plating(1st ed.), Makisyoten, Tokyo, 1984.
  2. McGraw-Hill, Encyclopedia of Science and Technology, pp. 544, McGraw-Hill Company, New York, 1977.
  3. A.W. Goldenstein, W. Rostoker, F. Schossberger and G. Gutzeit, J. Electrochem. Soc., 104, pp. 104, 1957. https://doi.org/10.1149/1.2428503
  4. M. Paunovic, Electrochemical Aspects of Electroless Deposition of Metals, Plating, November, pp. 1163, 1968.
  5. Kim Chang Wook, The J. of K.W.U., 15, pp. 144, 1986.
  6. W. Mindt, J. Electrochem. Soc., 117, pp. 615, 1970. https://doi.org/10.1149/1.2407588
  7. T. K. Chee and W. K. Yeo, Electroless Nickel Plating, Metal Surface Treatment, 15, pp. 1, 1982.
  8. W. Goldie, Metallic Coating of Plastics, Electrochemical publications Ltd., Middlesex, 1968.
  9. H. Adachi, K. Taki, S. Nagamine, A. Yusa and M. Ohshima, Supercritical carbon dioxide assisted electroless plating on thermoplastic polymers, J. of Supercritical Fluids, 49, pp. 265, 2009. https://doi.org/10.1016/j.supflu.2008.12.010
  10. P. Jalonen, A new concept for making fine line substrate for active component in polymer, Microelectronics Journal, 34, pp. 99, 2003. https://doi.org/10.1016/S0026-2692(02)00171-4
  11. J. Hajdu and G. Krulik : Comparison of Electroless Deposits For Electromagnetic Interference Shielding, pp. 42, Plating and Surface Finishing, 1983.
  12. T. Osaka, K. Nibin, Advanced Functional Film Process Technology, pp. 741, Tokyo, 1987.
  13. Report on the Environment-Friendly Industry (Plating Industry), pp. 20, MKE, 2003.
  14. KETI, Market Trends and Technology Development on Cu Plating Solutions, pp. 1, 2010.
  15. S. Mizuki, H. Nawahune, M. Mizaki, S. Kinisita, K. Araki, Fatigue Flexibility of the Surfaced Formed by Electroless Copper Plating, Metal Surface Treatment, 33, pp. 386, 1982.
  16. A.S.T.M. X-ray diffraction index card, NO.4-0836, 1991.