DOI QR코드

DOI QR Code

MOVPE Growth of InP Epitaxial Layers From TBP

TBP를 이용한 InP 에피층의 MOVPE 성장

  • Received : 2011.07.19
  • Accepted : 2011.09.10
  • Published : 2011.10.01

Abstract

TBP (tertiarybutylphosphine), a relatively new material for phosphorus, has been studied with EDMIn (ethyldimethylindium) as an indium source for the growth of InP by MOVPE (metalorganic vapor phase epitaxy). Mirror smooth and good crystalline InP layers were obtained at $500-600^{\circ}C$ with the TBP/EDMIn molar ratio as low as 21. The deposited InP layers are all n-type with the electron concentration in the range of (5-10)${\times}10^{16}\;cm^{-3}$, which is a lot higher than those from $PH_3$. This high concentration is due presumably to the high concentration of donor impurities in TBP. And it has been found that the formation of adduct occurs between EDMIn and TBP at room temperature when the partial pressure of EDMIn in the reactant mixture is above $1{\times}10^{-2}$ Torr. The high concentration of impurities in TBP and the adduct formation between EDMIn and TBP are major obstacles in replacing $PH_3$ and TMIn for the growth of device quality InP layers.

Keywords

References

  1. M . Sugo, Y. Takanashi, M . M . Al-jassim, and M. Yamaguchi, J. Appl. Phys., 68, 540 (1990). https://doi.org/10.1063/1.346826
  2. S. M. Vernon, C. J. Keavey, E. D. Gagnons, N. H. Karam, M. M. Al-Jassim, N. H. Haegel, V. P. Mazzi, and C. R. Wie, Mat. Res. Soc., Symp. Proc., 198, 163 (1990) https://doi.org/10.1557/PROC-198-163
  3. Y. Komaha, Y. Kadota, and Y. Ohmachi, J. Electrochem. Soc., 136, 3853 (1989). https://doi.org/10.1149/1.2096561
  4. Irving Sax, Dangerous Properties of Industrial materials (Van Nosttraud Reinhold, New York, 1988)
  5. F. G. Kellert, J. S. Whelan, and K. T. Chan, J. Elect. Mat., 18, 355 (1989). https://doi.org/10.1007/BF02657983
  6. C. A. Larsen, C. H. Chen, M. Kitamura, G. B. Stringfellow, D. W. Brown, and A. J. Robertson, Appl. Phys. Lett., 48, 1531 (1986). https://doi.org/10.1063/1.96858
  7. M. Razeghi, F. Omnes, R. Blondeau, Ph. Maurel, M. Defour, O. Acher, E. Vassilakis, G. Mesquida, J. C. C. Fan, and J. P. Salerno, J. Appl. Phys., 65, 4066 (1989). https://doi.org/10.1063/1.343334
  8. C. H. Chen, D. S. Cao, and G. B. Stringfellow, J. Elect. Mat., 17, 67 (1988). https://doi.org/10.1007/BF02652236
  9. R. P. Saxena, J. E. Fouquet, V. M. Sardi, and R. L. Moon, Appl. Phys. Lett., 53, 304 (1989).
  10. S. P. Denbaars, J. Korean Phys. Soc., 28, 37 (1995).
  11. S. H. Li, C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, J. Elect. Mat., 18, 457 (1989). https://doi.org/10.1007/BF02657995
  12. M. K. Lee, D. S. Wuu, H. H. Tung, K. Y. Yu, and K. C. Huang, Appl. Phys. Lett., 52, 880 (1988). https://doi.org/10.1063/1.99260
  13. C. H. Yoo, J. KIEEME, 11, 12 (1998).