DOI QR코드

DOI QR Code

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van (Division of Advanced Materials Science Engineering, Hanyang University) ;
  • Prachuporn, Maneeratanasarn (Division of Advanced Materials Science Engineering, Hanyang University) ;
  • Choi, Bong-Geun (Division of Advanced Materials Science Engineering, Hanyang University) ;
  • Kim, Hyoun-Woo (Division of Advanced Materials Science Engineering, Hanyang University) ;
  • So, Dae-Sup (National Nanotechnology Policy Center, Korea Institute of Science and Technology Information) ;
  • Lee, Joon-Woo (National Nanotechnology Policy Center, Korea Institute of Science and Technology Information) ;
  • Park, No-Hyung (Korea Institute of Industrial Technology) ;
  • Huh, Hoon (Korea Institute of Industrial Technology) ;
  • Tung, Ngo Trinh (Institute of Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Ham, Heon (Division of Advanced Materials Science Engineering, Hanyang University) ;
  • Shim, Kwang-Bo (Division of Advanced Materials Science Engineering, Hanyang University)
  • Received : 2011.06.07
  • Accepted : 2011.07.29
  • Published : 2011.08.31

Abstract

Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

Keywords

References

  1. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, "Catalytic growth of zinc nanowires by vapor transport", Adv. Mater. 13 (2001) 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  2. Z.L. Wang, "Zinc oxide nanostructures: growth, properties and applications", J. Phys.: Condens. Matter. 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
  3. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang and D.P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett. 83 (2003) 1689. https://doi.org/10.1063/1.1605808
  4. J.J. Wu, S.C. Liu, T.C. Wu, K.H. Chen and L.C. Chen, "Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes", Appl. Phys. Lett. 81 (2002) 1312. https://doi.org/10.1063/1.1499512
  5. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett. 70 (1997) 2230. https://doi.org/10.1063/1.118824
  6. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO", Nat. Mater. 4 (2005) 42. https://doi.org/10.1038/nmat1284
  7. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, "Room-temperature ultraviolet nanowire nanolasers", Science 292 (2001) 1897. https://doi.org/10.1126/science.1060367
  8. S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini and J.T. Fourkas, "Field-emission studies on thin films of zinc oxide nanowires", Appl. Phys. Lett. 83 (2003) 4821. https://doi.org/10.1063/1.1631735
  9. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang and R.M. Wang, "Efficient field emission from ZnO nanoneedle arrays", Appl. Phys. Lett. 83 (2003) 144. https://doi.org/10.1063/1.1589166
  10. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He and H.J. Choi, "Controlled growth of ZnO nanowires and their optical properties", Adv. Funct. Mater. 12 (2002) 323. https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  11. X.D. Wang, J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis and Z.L. Wang, "Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for largescale applications", J. Phys. Chem. B 110 (2006) 7720. https://doi.org/10.1021/jp060346h
  12. T.W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu and T. Sekiguchi, "Low-temperature orientation-selective growth and ultraviolet emission of single crystal ZnO nanowires", Appl. Phys. Lett. 84 (2004) 3358. https://doi.org/10.1063/1.1723696
  13. J.H. Ryu, D.K. Oh, S.T. Yoon, B.G. Choi, J.W. Yoon and K.B. Shim, "Optical characteristics of GaN single crystals grown by the HVPE: Effects of thermal annealing and $N_{2}$ plasma treatment", J. Cryst. Growth 292 (2006) 206. https://doi.org/10.1016/j.jcrysgro.2006.04.017
  14. H.Q. Le, S.J. Chua, K.P. Loh, E.A. Fitzgerald and Y.W. Koh, "Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis", Nanotechnology 17 (2006) 483. https://doi.org/10.1088/0957-4484/17/2/023
  15. Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K.J. Hiraga, Z. Zhu and T.J. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization", Appl. Phys. 84 (1998) 3912. https://doi.org/10.1063/1.368595
  16. H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost and M. Zacharias, "Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography", J. Cryst. Growth 287 (2006) 34. https://doi.org/10.1016/j.jcrysgro.2005.10.038
  17. B.H. Kong and H.K. Cho, "Growth and microstructural characterization of catalyst-free ZnO nanostructures grown on sapphire and GaN by thermal evaporation", J. Mater. Res. 22 (2007) 937. https://doi.org/10.1557/jmr.2007.0108
  18. W.J. Mai, P.X. Gao, C.S. Lao, Z.L. Wang, A.K. Sood, D.L. Polla and M.B. Soporano, "Vertically aligned ZnO nanowire arrays on GaN and SiC substrates", Chem. Phys. Lett. 460 (2008) 253. https://doi.org/10.1016/j.cplett.2008.06.017
  19. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu and X. Zhao, "Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures", J. Cryst. Growth 292 (2006) 19. https://doi.org/10.1016/j.jcrysgro.2006.03.061
  20. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou and J. Qi, "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives", Appl. Phys. Lett. 86 (2005) 024108. https://doi.org/10.1063/1.1851607
  21. H.M. Cheng, H.C. Hsu, S.Yang, C.Y. Wu, Y.C. Lee, L.J. Lin and W.F. Hsieh, "The substrate effect on the inplane orientation of vertically well-aligned ZnO nanorods grown on ZnO buffer layers", Nanotechnology 16 (2005) 2882. https://doi.org/10.1088/0957-4484/16/12/025
  22. A. Umar, H.W. Ra, J.P. Jeong, E.K. Suh and Y.B. Hahn, "Synthesis of ZnO nanowires on Si substrate by thermal evaporation method without catalyst: Structural and optical properties", Korean J. Chem. Eng. 23 (2006) 499. https://doi.org/10.1007/BF02706756
  23. U. Manzoor and D.Y. Kim, "Size control of ZnO nanostructures formed in different temperature zones by varying Ar flow rate with tunable optical properties", Physica E 41(2009) 500. https://doi.org/10.1016/j.physe.2008.09.012
  24. Y. Zhang, H. Jia and D. Yu, "Metal-catalyst-free epitaxial growth of aligned ZnO nanowires on silicon wafers at low temperature", J. Phys. D: Appl. Phys. 37 (2004) 413. https://doi.org/10.1088/0022-3727/37/3/018
  25. H.C. Hsu, C.S. Cheng, C.C. Cheng, S. Yang, C.S. Chang and W.F. Hsieh, "Orientation enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates", Nanochnology 16 (2005) 297.
  26. L. Vayssieres, "On the design of advanced metal oxide nanomaterials", Int. J. Nanotechnol. 1 (2004) 1. https://doi.org/10.1504/IJNT.2004.003728
  27. J. Nayak, S.N. Sahu, J. Kasuya and S. Nozaki, "Effect of substrate on the structure and optical properties of ZnO nanorods", J. Phys. D: Appl. Phys. 41 (2008) 115303. https://doi.org/10.1088/0022-3727/41/11/115303
  28. A. Nahhas, H.K. Kim and J. Blachere, "Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer", Appl. Phys. Lett. 78 (2001) 1511. https://doi.org/10.1063/1.1355296
  29. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh and H.J. Lee, "Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method", Chem. Mater. 15 (2003) 3294. https://doi.org/10.1021/cm020465j
  30. H. Tang, J.C. Chang, Y. Shan, D.D.D. Ma, T.Z. Lui, J.A. Zapien, C.S. Lee and S.T. Lee, "Growth mechanism of ZnO nanowires via direct Zn evaporation", J. Mater. Sci. 44 (2009) 563. https://doi.org/10.1007/s10853-008-3071-6
  31. Z.W. Pan, Z.R. Dai, L. Xu, S.T. Lee and Z.L. Wang, "Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders", J. Phys. Chem. B 105 (2001) 2507. https://doi.org/10.1021/jp004253q
  32. S.H. Dalal, D.L. Baptista, K.B. Teo and R.G. Lacerda, "Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition", Nanotechnology 17 (2006) 4811. https://doi.org/10.1088/0957-4484/17/19/005
  33. F. Fang, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, X.W. Fan, B.H. Li and X.H. Wang, "The influence of growth temperature on ZnO nanowires", Mater. Lett. 62 (2008) 1092. https://doi.org/10.1016/j.matlet.2007.07.073
  34. X.H. Han, G.Z. Wang, J.S. Jie, W.C. Choy, Y. Luo, T.I. Yuk and J.G. Hou, "Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature", J. Phys. Chem. B 109 (2005) 2733. https://doi.org/10.1021/jp0475943
  35. G. Shen and C. Lee, "CdS multipod-based structures through a thermal evaporation process", Cryst. Growth & Design 5 (2005) 1085. https://doi.org/10.1021/cg0496437
  36. Y.C. Kong, D.P.Yu, B. Zhang, W. Fang and S.Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach", Appl. Phys. Lett. 78 (2001) 407. https://doi.org/10.1063/1.1342050
  37. R. Dingle, "Luminsencent transitions associated with divalent copper impurities and the green emission from semiconductor Zinc oxide", Phys. Rev. Lett. 23 (1969) 579. https://doi.org/10.1103/PhysRevLett.23.579
  38. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voight and B.E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J. Appl. Phys. 79 (1996) 7983. https://doi.org/10.1063/1.362349
  39. B.X. Lin, Z.X. Fu and Y.B. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates", Appl. Phys. Lett. 79 (2001) 943. https://doi.org/10.1063/1.1394173
  40. Y. Yang, H. Yan, Fu Z, B. Yang, L. Xia, Y. Xu, J. Zuo and F. Li, "Photoluminescence and Raman studies of electrochemically as-grown and annealed ZnO films", Solid State Commun. 138 (2006) 521. https://doi.org/10.1016/j.ssc.2006.04.024
  41. N.O. Korsumska, L.V. Borkovska, B.M. Bulakh, L.Y. Knomenkava, V.I. Kushniranko and I.V. Markevich, "The influence of defect drift in external electric field on green luminescence of ZnO single crystals", J. Lumin. 733 (2003) 102.
  42. A.F. Kohan, G. Ceder, D. Morgan and C.G. Van de Walle, "First-principles study of native point defects in ZnO", Phys. Rev. B 61 (2000) 15019. https://doi.org/10.1103/PhysRevB.61.15019
  43. K.Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant and J.A. Voigt, "Mechanisms behind green photoluminescence in ZnO phosphor powders", Appl. Phys. Lett. 68 (1996) 403. https://doi.org/10.1063/1.116699
  44. A. Umar, B. Karunagaran, E.K. Suh and Y.B. Hahn, "Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation", Nanotechnology 17 (2006) 4072. https://doi.org/10.1088/0957-4484/17/16/013
  45. B.D. Yao, Y.F. Chen and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation", Appl. Phys. Lett. 81 (2002) 757. https://doi.org/10.1063/1.1495878
  46. R. Calarco, R.J. Meijers, R.K. Debnath, T. Stoica, E. Sutter and H. Lüth, "Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy", Nano Lett. 7 (2007) 2248. https://doi.org/10.1021/nl0707398
  47. W.D. Yu, X.M. Li and X.D. Gao, "Effect of zinc sources on the morphology of ZnO nanostructures and their photoluminescence properties", Appl. Phys. A 79 (2004) 453. https://doi.org/10.1007/s00339-004-2665-3
  48. A. Chatterjee, C.H. Shen, A. Granguly, L.C. Chen, C.W. Hsu, J.Y. Hwang and K.H. Chen, "Strong room-temperature UV emission of nanocrystalline ZnO films derived from a polymeric solution", Chem. Phys. Lett. 391 (2004) 278. https://doi.org/10.1016/j.cplett.2004.05.021
  49. K.A. Jeon, H.J. Son, C.E. Kim, J.H. Kim and S.Y. Lee, "Photoluminescence of ZnO nanowires grown on sapphire (1120) substrates", Physica E 37 (2007) 222. https://doi.org/10.1016/j.physe.2006.10.017
  50. H.J. Son, K.A. Jeon, C.E. Kim, J.H. Kim, K.H. Yoo and S.Y. Lee, "Synthesis of ZnO nanowires by pulsed laser deposition in furnace", Appl. Surf. Sci. 253 (2007) 7848. https://doi.org/10.1016/j.apsusc.2007.02.098