DOI QR코드

DOI QR Code

Characterization of Anti-Listerial Substance Produced by Lactobacillus salivarius LCH1227

Lactobacillus salivarius LCH1230으로부터 생산된 Listeria 균 억제물질의 특성

  • Shin, Yu-Ri (Department of Animal Resources Science, Dankook University) ;
  • Lim, Kong-Boon (Department of Animal Resources Science, Dankook University) ;
  • Chae, Jong-Pyo (Department of Animal Resources Science, Dankook University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
  • 신유리 (단국대학교 생명자원과학대학 동물자원학과) ;
  • 임공분 (단국대학교 생명자원과학대학 동물자원학과) ;
  • 채종표 (단국대학교 생명자원과학대학 동물자원학과) ;
  • 강대경 (단국대학교 생명자원과학대학 동물자원학과)
  • Received : 2011.06.22
  • Accepted : 2011.08.23
  • Published : 2011.08.31

Abstract

In this study, a LCH1227 bacterial strain that possesses anti-listerial activity was isolated from fermented food and identified as Lactobacillus salivarius LCH1227 based on its morphological and biochemical properties, as well as its 16S rRNA gene sequences. Anti-listerial substance also inhibited the growth of various Gram-positive bacteria, such as vancomycinresistant Enterococcus faecalis, Streptococcus agalactiae, Bacillus cereus, Lactobacillus fermentum. The highest level of production of antimicrobial substances from L. salivarius LCH1227 occurred during the early stationary phase. The antilisterial activity was found to be stable over a broad range of pH values (2.0-12.0) and after heat treatment. However, it was inactivated by proteolytic enzymes, indicating its proteinaceous nature. The apparent molecular mass of the partially purified anti-listerial substance, as measured by Tricine-SDS-PAGE, was approximately 5 kDa.

전통발효식품으로부터 L. monocytogenes ATCC 19114에 강한 항균활성을 보이는 균주를 분리하였다. 분리된 균주의 형태학적 및 생화학적 특성과 16S rRNA 염기서열 분석을 통해 Lactobacillus salivarius LCH1227으로 동정되었다. L. salivarius LCH1227이 분비하는 항균물질은 L. monocytogenes 뿐만 아니라 vancomycin-resistant Enterococcus faecalis, Streptococcus agalactiae, Bacillus cereus, Lactobacillus fermentum 등과 같은 그람양성 세균에 대해 폭 넓은 항균 활성을 나타내었다. L. salivarius LCH1227의 생육에 따른 항균 활성을 측정한 결과, 생장정체기 초기에 최대 활성(300 AU/mL)을 나타내었고, 생장정체기 이후부터 활성이 점차 감소하였다. 항균물질의 활성은 pH 2-12 구간에서 비교적 안정하였으며, 열처리에 의해서도 활성이 소실되지 않아 열에 안정한 물질임을 알 수 있었다. L. salivarius LCH1227이 생산하는 항균물질은 단백질 분해효소 처리 후에 활성이 실활됨으로써 단백질성 물질인 것으로 추정되었으며, Tricine-SDS-PAGE 실험을 통하여 항균물질의 분자량은 약 5 kDa 정도임을 알 수 있었다.

Keywords

References

  1. Aasen, I. M., Moretro, T., Katla T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42678. Appl. Microbiol. Biotechnol. 53, 159-166. https://doi.org/10.1007/s002530050003
  2. Barrett, E., Hayes, M., O'Connor, P., Gardiner, G., Fitzgerald, G. F., Stanton, C., Ross, R. P., and Hill, C. (2007) Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. J. Appl. Bacteriol. 73, 3719-3723.
  3. Cavard, D. and Lazdunski, C. J. (1979) Purification and molecular properties of a new colicin, Eur. J. Biochem., 96, 519. https://doi.org/10.1111/j.1432-1033.1979.tb13065.x
  4. Chang, J. Y., Lee, H. H., Kim, I. C., and Chang, H. C. (2001) Characterization of bacteriocin produced by Bacillus licheniformis CY2. J. Korean Soc. Food Sci. Nutr. 30, 410-414.
  5. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  6. Daba, H., Panadian, S., Gosselin, J. F., Simard, R., Huang, J., and Lacroix, C. (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microb. 57, 3450-3455.
  7. Daeschel, M. A. and Mckenney, M. C. (1990) Bactericidal activity of Lactobacillus plantarum C11. Food Microbiol. 7, 91-98. https://doi.org/10.1016/0740-0020(90)90014-9
  8. De Klerk, H. C. and Smit, J. A. (1967) Properties of a Lactobacillus fermenti bacteriocin, J. Gen. Microb. 48, 1309.
  9. Delves-Broughton, J. (1990) Nisin and its uses as a food preservative. Food Technol. 44, 100-117.
  10. De Sad, A. M. S. and De Nadra, M. C. M. (1993) Characterization of bacteriocin produced by Pediococcus pentosaceus from wine. J. Appl. Bacteriol. 74, 406. https://doi.org/10.1111/j.1365-2672.1993.tb05146.x
  11. Diez-Gonzalez, F. (2007) Applications of bacteriocins in livestock. Curr. Issues Intestinal Microbiol. 8, 15-24.
  12. Ennahar, S., Sashihara, T., Sonomoto, K., and Ishizaki, A. (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24, 85-106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x
  13. Faber, J. M., Sanders, G. W., and Johnston, M. A. (1989) A survey of various foods for the presence of Listeria species. J. Food Prot. 52, 456-458.
  14. Fredericq, P. (1958) Colicins and colicinogenic facters. Symp. Soc. Exp. Biol. 12, 104.
  15. Galvez, A., Abriouel, H., Lopex, R. L., and Ben Omar, N. (2007) Bacteriocin-based strategies for food biopreservation. Int. J. Microbiol. 30, 51-70.
  16. Gillor, O., Kirkup, B. C., and Riley, M. A. (2004) Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol. 54, 129-146. https://doi.org/10.1016/S0065-2164(04)54005-4
  17. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., and Williams, S. T. (1994) Regular, nonsporing gram-positive rods. In: Bergey's Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins. Baltimore, USA. pp. 565-570.
  18. Jeoger, M. and Klaenhammer, T. R. (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 418. J. Bacteriol. 167, 439.
  19. Johnson, J. L., Doyle, M. P., and Cassens, R. G. (1990) Listeria monocytogenes and other Listeria spp. in meat and meat products (a review). J. Food Prot. 53, 81-91.
  20. Karaioannoglou, P. G. and Xenos, G. C. (1980) Survival of Listeria monocytogenes in meatballs. Hell. Vet. Med. 23, 111-117.
  21. Kim, H. T., Park, J. Y., Lee, G. G., and Kim, J. H. (2003) Isolation of a bacteriocin-producing Lactobacillus plantarum strain from Kimchi. Food Sci. Biotechnol. 12, 166-170.
  22. Laura, J. P. and Elmer, H. M. (1990) Listeria monocytogenes threat to a safe food supply; A review. J. Dairy Sci. 37, 912-928.
  23. Lee, H. J., Joo, Y. J., Park, C. S., Kim, S. H., Hwang, I. K., Ahn, J. S., and Mheen, T. I. (1999) Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from Kimchi. J. Biosci. Bioeng. 88, 153-159. https://doi.org/10.1016/S1389-1723(99)80194-7
  24. Lim S. J., Jang, S. S., and Kang, D. K. (2007) Probiotic properties of Lactobacillus salivarius CPM-7 isolated from chicken feces. Kor. J. Microbiol. Biotechnol. 35, 98-103
  25. Liu, W. and Hansen, J. N. (1990) Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microb. 56, 2551-2558.
  26. Mayr, H. A., Hedges, A. J., and Berkeley, R. C. W. (1972) Methods for studying bacteriocin. In: Methods in Microbiology, Bergen, T. and Norris, J. R. (eds) Academic Press, New York, pp. 313-342.
  27. Muriana, P. W. and Klaenhammer, T. R. (1991) Clonining, phenotypic expression, and DNA sequence of the gen for lactacin F, a bacteriocin produced by Lactobacillus acidophilus. J. Bacteriol. 55, 1779.
  28. Murry, E. G. D., Webb, R., and Swann, M. B. R. (1926) Disease of rabbits characterized by large mononuclear leucocytosis caused by a hither to undescribed bacterium Bacillus monocytogenes(n. sp.). J. Pat. Bact. 29, 407-439. https://doi.org/10.1002/path.1700290409
  29. Oravcov, K., Trnckov, T., Kuchta, T., and Kaclkov, E. (2008) Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua. J. Appl. Microbiol. 104, 429-37.
  30. Paik, H. D., Koo, K. M., Kim, J. G., and Lee, N. K. (2003) Optimization for lacticin SA72 production by Lactococcus lactis SA72 isolated from Jeot-gal. Kor. J. Microbiol. Biotechnol. 31, 46-50.
  31. Parente, E., Ricciardi, A., and Addario, G. (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388-394.
  32. Pavlova, S. I., Kilic, A. O., Kilic, S. S., So, J. S., Nader-Macias, M. E., Simoes, J. A., and Tao, L. (2002) Genetic diversity of vaginal Lactobacillus from women in different countries based on 16S rRNA gene sequences. J. Appl. Microbiol. 92, 451-459. https://doi.org/10.1046/j.1365-2672.2002.01547.x
  33. Piard, J. C., Delorme, F., Giraffa, G., Commissaire, J., and Desmazeud, M. (1990) Evidence for a bacteriocin produced by Lactococcus lactis CNRZ 481. Neth. Milk Dairy J. 44, 143-158.
  34. Pilasombut, K., Sakpuaram, T., Wajjwalku, W., Nitisinprasert, S., Swetwiwathana, A., Zendo, T., Fujita K., Nakayama, J. and Sonomoto, K. (2006) Purification and amino acid sequence of a bacteriocins produced by Lactobacillus salivarius K7 isolated from chicken intestine. J. Sci. Technol. 28, 121-131.
  35. Ray, S. K., Kim, W. J., Johnson, M. C., and Ray, B. (1989) Conjugal transfer of a plasmid encoding bacteriocin production and immunity in Pediococcus acidilactici H. J. Appl. Bacteriol. 66, 393. https://doi.org/10.1111/j.1365-2672.1989.tb05108.x
  36. Ramaswamy, V., Cresence, V. M., Rejitha, J. S., Lekshmi, M. U., Dharsana, K. S., Prasad, S. P., and Vijila, H. M. (2007) Listeria-review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. 40, 4-13.
  37. Rammelsberg, M. and Radler, F. (1990) Antibacterial polypeptide of Lactobacillus species. J. Appl. Bacteriol. 69, 177-184. https://doi.org/10.1111/j.1365-2672.1990.tb01507.x
  38. Reevs, P. (1965) The bacteriocins. Bacteriol. Rev. 29, 24.
  39. Ruiz-Barba, J. L., Piard, J. C., and Jimenez-Diaz, R. (1991) Plasmid profile and curing of plasmid in Lactobacillus plantarum strains isolated from green olive fermentations. J. Appl. Bacteriol. 71, 417. https://doi.org/10.1111/j.1365-2672.1991.tb03810.x
  40. Ryan, M. P., Meaney, W. J., Ross, R. P., and Hill, C. (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl. Environ. Microbiol. 64, 2287-2290.
  41. Schgger, H. and Von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  42. Sohn, J. H., Lee, J. H., Yi, H., Chun, J., Bae, K. S., Ahn, T. Y., and Kim, S. J. (2004) Kordia algicida gen. no., sp. nov., an algicidal bacterium isolated from red tide. Int. J. Syst. Environ. Microbiol. 54, 675-680. https://doi.org/10.1099/ijs.0.02689-0
  43. Tagg, J. R., Dajani, A. S., and Wannamaker, L. W. (1976) Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722.
  44. Tagg, J. R. and Mcgiven, A. R. (1971) Assay system for bacteriocin. Appl. Microbiol. 21, 943.
  45. Vasavada, P. C. (1988) Pathogenic bacteria in milk (a review). J. Dairy Sci. 71, 2809-2816. https://doi.org/10.3168/jds.S0022-0302(88)79876-8

Cited by

  1. Molecular cloning, characterization and comparison of bile salt hydrolases fromLactobacillus johnsoniiPF01 vol.114, pp.1, 2013, https://doi.org/10.1111/jam.12027