DOI QR코드

DOI QR Code

Acid Resistance of Cronobacter sakazakii

Cronobacter sakazakii의 산 저항성

  • Jang, Sung-Ran (Department of Food and Nutrition, Yeungnam University) ;
  • Bang, Woo-Suk (Department of Food and Nutrition, Yeungnam University)
  • 장성란 (영남대학교 식품영양학과) ;
  • 방우석 (영남대학교 식품영양학과)
  • Received : 2011.03.22
  • Accepted : 2011.07.08
  • Published : 2011.08.31

Abstract

The objective of this study was to determine the resistance of Cronobacter sakazakii in acidic environments. The D-values of CAFM2 (ATCC 29544), EB 1, EB 5, and EB 41 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 5-h then when cells were not adapted at pH 4.5 in TSB. The D-values of CAFM2, EB1, and EB 41 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 10-h then when cells were not adapted at pH 4.5 in TSB. The D-values of CAFM2 and EB1 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 24-h then when cells were not adapted at pH 4.5 in TSB. The adaptation of C. sakazakii to mild acidic environments may result in increased resistance to severe acidic environments. The D-values of all test strains at pH 2.5 in TSB were significantly (p<0.05) higher when cells were cultured at pH 4.5 then when they were cultured at pH 7.2 in TSB. These data indicate that cells cultured in mildly acidic environments may result in increased resistance to severe acidic environments. The acid adaptation of C. sakazakii showed an increased resistance to acidic environments. The acid adaptation response of C. sakazakii has important implications for food safety, which should be considered when food preservation measures are developed.

본 연구는 표준균주 C. sakazakii(CAFM2)와 4개의 야생균주(EB 1, EB 5, EB 7, EB 41)를 사용하여 pH를 조정한 산성 환경에서의 저항성을 살펴보았다. C. sakazakii는 pH 4.5 TSB에서 5시간, 10시간 동안 적응한 경우, pH 4.5 TSB에서 적응하지 않은 경우와 비교하여 EB 7을 제외한 모든 균주가 pH 2.5 TSB에서의 D값이 유의적으로 높게 나타났다(p<0.05). 따라서 약산성 환경에서 적응한 균주는 강산성 환경에서의 저항성이 증가하였다. C. sakazakii는 pH 4.5 TSB에서 배양한 경우, pH 7.2 TSB에서 배양한 경우와 비교하여 모든 균주가 pH 2.5 TSB에서의 D값이 유의적으로 높게 나타났다(p<0.05). 따라서 약산성 환경에서 배양한 균주는 강산성 환경에서의 저항성이 증가하였다. 본 연구를 통해 C. sakazakii는 약산성 환경에 적응한 경우 강산성 환경에서의 저항성이 증가하는 것으로 나타났다. 이러한 acid adaptation response는 C. sakazakii와 관련된 식품 가공 산업에서의 hurdle technology를 적용하는데 있어서 안전성 확보와 관련된 시사점을 제공할 수 있을 것으로 판단된다.

Keywords

References

  1. Bang, W. and Drake, M. A. (2005) Acid adaptation of Vibrio vulnificus and subsequent impact on stress tolerance. Food Microbiol. 22, 301-309. https://doi.org/10.1016/j.fm.2004.09.006
  2. Bar-Oz, B., Preminger, A., Peleg, O., Block, C., and Arad, I. (2001) Enterobacter sakazakii infection in the newborn. Acta Paediatr. 90, 356-358. https://doi.org/10.1080/080352501300067857
  3. Beales, N. (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress : a review. Comp. Rev. Food Sci. F. 3, 1-20. https://doi.org/10.1111/j.1541-4337.2004.tb00057.x
  4. Breeuwer, P., Lardeau, A., Peterz, M., and Joosten, H. M. (2003) Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95, 967-973. https://doi.org/10.1046/j.1365-2672.2003.02067.x
  5. Brown, J. L., Ross, T., McMeekin, T. A., and Nichols, P. D. (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37, 163-173. https://doi.org/10.1016/S0168-1605(97)00068-8
  6. Burdette, J. H. and Santos, C. (2000) Enterobacter sakazakii brain abscess in the neonate : the importance of neuroradiologic imaging. Pediatr. Radiol. 30, 33-34. https://doi.org/10.1007/s002470050009
  7. Cheng, H. Y. and Chou, C. C. (2001) Acid adaptation and temperature effect on the survival of Escherichia coli O157: H7 in acidic fruit juice and lactic fermented milk product. J. Food Microbiol. 70, 189-195. https://doi.org/10.1016/S0168-1605(01)00538-4
  8. Cheng, H. Y., Yu, R. C., and Chou, C. C. (2003) Increased acid tolerance of Escherichia coli O157:H7 as affected by acid adaptation time and conditions of acid challenge. J. Food Res. Int. 36:49-56. https://doi.org/10.1016/S0963-9969(02)00107-2
  9. Cottyn, B., Regalado, E., Lannot, B., de Cleene, M., Mew, T. W., and Swings, J. (2001) Bacteria populations associated with rice seed in the tropical environment. J. Phytopathol. 91, 282-292. https://doi.org/10.1094/PHYTO.2001.91.3.282
  10. Dancer, G. I., Mah, J. H., Rhee, M. S., Hwang, I. G., and Kang, D. H. (2009) Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J. Appl. Microbiol. 107, 1606-1614 https://doi.org/10.1111/j.1365-2672.2009.04347.x
  11. Davis, M. J., Coote, P. J., and O'Byrne, C. P. (1996) Acid tolerance in Listeria monocytogenes : the adaptive acid tolerance response (ATR) and growth phase-dependent acid resistance. J. Microbiol. 142, 2975-2982. https://doi.org/10.1099/13500872-142-10-2975
  12. De Angelis, M. and Gobbetti, M. (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4, 106-122. https://doi.org/10.1002/pmic.200300497
  13. Edelson-Mammel, S. G., Porteous, M. K., and Buchanan, R. L. (2005) Survival of Enterobacter sakazakii in dehydrated powdered infant formula. J. Food Prot. 68, 1900-1902.
  14. Edelson-Mammel, S. G., Porteous, M. K., and Buchannan, R.L. (2006) Acid resistance of twelve strains of Enterobacter sakazakii, and the impact of habituating the cells to an acidic environment. J. Food Sci. 71, 201-207. https://doi.org/10.1111/j.1750-3841.2006.00101.x
  15. Farber, J. M. and Forsythe, S. J. (2008) Enterobacter sakazakii. ASM press, Washington DC, USA, pp. 15-19.
  16. Ferreira, A., Sue, D., O'Byrne, C. P., and Boor, K. J. (2003) Role of Listeria monocytogenes $\sigma^{B}$ in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl. Environ. Microbiol. 69, 2692-2698. https://doi.org/10.1128/AEM.69.5.2692-2698.2003
  17. Flahaut, S., Hartke, A., Giard, J. C., Benachour, A., Boutibonnes, P., and Auffray, Y. (1996) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microb. Lett. 138, 49-54. https://doi.org/10.1111/j.1574-6968.1996.tb08133.x
  18. Foster, J. W. (1991) Salmonella acid shock proteins are required for the adaptive acid tolerance response. J. Bacteriol. 173, 6896-902.
  19. Foster, J. W. (2000) Microbial responses to acid stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, USA, pp. 99-116.
  20. Foster, J. W. and Hall, H. K. (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella thyphimurium. J. Bacteriol. 173, 5129-5135.
  21. Gahan, C. G. M., O'Driscoll, B., and Hill, C. (1996) Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl. Environ. Microb. 62, 3128-3132.
  22. Garren, D. M., Harrison, M. A., and Russell, S. M. (1997) Retention of acid tolerance and acid shock responses of Escherichia coli O157:H7 andnon-O157:H7 isolates. J. Food Prot. 60, 1478-1482.
  23. Hawkins, R. E., Lissner, C. R., and Sanford, J. P. (1991) Enterobacter sakazakii bacteremia in an adult. South. Med. J. 84, 793-795. https://doi.org/10.1097/00007611-199106000-00033
  24. Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the sigma S (rpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373-395. https://doi.org/10.1128/MMBR.66.3.373-395.2002
  25. Himelright, I., Harris, E., Lorch, V., and Anderson, M. (2002) Enterobacter sakazakii infections associated with the use of powdered infant formula - Tennessee, 2001. J. Am. Med. Assoc. 287, 2204-2205. https://doi.org/10.1001/jama.287.17.2204
  26. Ibrahim, S. A., Salameh, M. M., Seo, C. W., Tse, T. S. F., and Yang, H. (2005) Acid resistance of Enterobacter sakazakii. IFT Annual Meeting July 15-20 - New Orleans, Louisiana. Session 89-E.
  27. Isonhood, J. H., Gerard, P. D., Leenanon, B., and Drake, M. A. (2002) Stress responses of Aeromonas hydrophila following environmental challenges. J. Food Microbiol. 19, 285-293. https://doi.org/10.1006/fmic.2002.0500
  28. Jimenez, E. B. and Gimenez, C. (1982) Septic shock due to Enterobacter sakazakii. Clin. Microbiol. Newsl. 4, 30. https://doi.org/10.1016/S0196-4399(82)80129-3
  29. Kandhai, M. C., Reij, M. W., Gorris, L. G., Guillaume-Gentil, O., and van Schothorst, M. (2004) Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363, 39-40. https://doi.org/10.1016/S0140-6736(03)15169-0
  30. Kim, S. A., Lee, Y. M., Oh, S. W., Gwak, H. S., Hwang, I. G., Kang, D. H., Woo, G. J., and Rhee, M. S. (2009) Biofilm formation and low pH viability of Cronobacter spp. (Enterobacter sakazakii) isolated from powdered infant formula and infant foods in Korea. Korea J. Food Sci. 29, 702-708.
  31. Leenanon, B. and Drake, M. A. (2001) Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J. Food Prot. 64, 970-974.
  32. Leyer, G. J., Wang, L. L., and Johnson, E. A. (1995) Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl. Environ. Microb. 61, 3752-3755.
  33. Leyer, G. L. and Johnson, E. A. (1993) Acid adaptation induces cross protection against environmental stresses in Salmonella Typhimurium. Appl. Environ. Microb. 59, 1842-1847.
  34. Loewen, P. C., Hu, B., Strutinsky, J., and Sparling, R. (1998) Regulation in the rpoS regulon of Escherichia coli. Can. J. Microbiol. 44, 707-717. https://doi.org/10.1139/cjm-44-8-707
  35. Nazarowec-White, M. and Farber, J. M. (1997) Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Prot. 60, 226-230.
  36. Neelam, M., Nawaz, Z., and Riazuddin, S. (1987) Hydrocarbon bio degradation biochemical characterization of bacteria isolated from local soils. Pak. J. Sci. Ind. Res. 30, 382-385.
  37. Park, Y. K., Bearson, B., Bang, S. H., Bang, I. S., and Foster, J. W. (1996) Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhymurium. J. Mol. Microbiol. 20, 605-611. https://doi.org/10.1046/j.1365-2958.1996.5441070.x
  38. Richards, G. M., Gurtler, J. B., and Beuchat, L. R. (2005) Survival and growth of Enterobacter sakazakii in infant rice cereal reconstituted with water, milk, lipid infant formula or apple juice. J. Appl. Microbiol. 99, 844-850. https://doi.org/10.1111/j.1365-2672.2005.02656.x
  39. Robert, K., Deborah, A. S., and Antonio, T. (1993) The stationary phase of the bacterial life cycle. Ann. Rev. Microbiol. 47, 855-874. https://doi.org/10.1146/annurev.mi.47.100193.004231
  40. Ryu, J. H. and Beuchat, L. R. (1998) Influence of acid tolerance responses on survival growth and thermal cross protection of Escherichia coli O157:H7 in acidified media and fruits juices. Int. J. Food Microbiol. 45, 185-193. https://doi.org/10.1016/S0168-1605(98)00165-2
  41. Sanders, J. W., Venema, G., and Kok, J. (1999) Environmental stress response in Lactococcus lactis. FEMS Microbiol. Rev. 23, 483-501. https://doi.org/10.1111/j.1574-6976.1999.tb00409.x
  42. Soriano, J. M., Rico, H., Molto, J. C., and Manes, J. (2001) Incidence of microbial flora in lettuce, meat and Spanish potato omelette from restaurants. J. Food Microbiol. 18, 159-163.
  43. Tsai, Y. W. and Ingham, S. C. (1997) Survival of Escherichia coli O157:H7 and Salmonella spp. in acidic condiments. J. Food Prot. 60, 751-755.
  44. Van Acker, J., de Smet, F., Muyldermans, G., Bougatef, A., Naessens, A., and Lauwer, S. (2001) Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39, 293-297. https://doi.org/10.1128/JCM.39.1.293-297.2001
  45. Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., and Lan, S. L. (1998) Effect of mild acid treatment on the survival, enteropathogenicity and protein production in Vibrio parahaemolyticus. Infect. Immun. 66, 3066-3071.

Cited by

  1. Acid stress management by Cronobacter sakazakii vol.178, 2014, https://doi.org/10.1016/j.ijfoodmicro.2014.03.001