DOI QR코드

DOI QR Code

The Scientific Analysis of Aged' Shoe for Health Promotion

노인 건강증진용 신발의 운동과학적 효과분석

  • Jin, Young-Wan (Department of Special Physical Education Dong-Eui University) ;
  • Kwak, Yi-Sub (Department of Physical Education Dong-Eui University)
  • 진영완 (동의대학교 특수체육학과) ;
  • 곽이섭 (동의대학교 체육학과)
  • Received : 2011.08.08
  • Accepted : 2011.09.08
  • Published : 2011.09.30

Abstract

The purpose of this study was to analyze and compare the effects of exercise science of shoes for Aged' health promotion. Kinematic and kinetic data were collected using cinematography and the Zebris system (Zebris Emed Sensor Platform, GR-DVL9800) to analyze pressure of foot and ground reaction force. Subjects recruited were 20 healthy elderly men. They walked at 1.36m/sec velocity wearing type A (domestic), type B (foreign) and walking shoes (A company). One-way ANOVA was used to analyze statistics. The results were as following: no significant differences were observed in gait variables among the three groups (p<0.05). There was a significant difference in max pronation angle of heels examined among the three groups (p<0.05). There were no significant differences in kinetic variables (ground reaction force and max pressure) among the three groups (p<0.05). A physiology study was performed to analyze the effects of walking with shoes with silver added to them on percent body fat, resting metabolic rate and energy expenditure. Sixty adults males were recruited from the public health center. They were divided into four groups. C: control group (n=20), EY: elderly Y group (n=20), and EO: elderly O group (n=20). The results of this study were as follows: percent body fat was decreased following each exercise period, however, not all the groups showed a significant difference. The change of resting metabolic rate was significantly increased in HI (high intensity) and LI (low intensity) periods in the C and EY groups. However, there was no significant difference in the EO group. The mean energy expenditure during and after exercise were significantly lowered in all periods compared to the control group.

본 연구에서는 국내외 실버화와 일반적인 운동화에 대한 1차 운동기능학적 분석을 통하여 노인에게 가장 적합한 신발을 정하고 2차 운동생리학적 실험을 통해 체지방률변화, 운동강도에 따른 대사량의 변화 그리고 에너지 소비량의 변화를 분석하였다. 본 연구의 대상으로는 특별한 질병을 가지고 있지 않은 남자 어른들 20명을 대상으로 하였으며, 평균나이는 $62.78{\pm}4.32$세, 신장은 $170.89{\pm}3.56cm$ 그리고 몸무게는 $75.12{\pm}8.76kg$이었다. 실험 전 실험에 대한 충분한 설명을 하고 동의서를 받은 후 데이터를 수집하였다. 본 연구를 위하여 운동 기능학적 실험과 운동 생리학적 실험을 수행하였으며, 본 연구결과 걷기나 달리기 시 최초 발 뒤꿈치 접촉 시 발이 회내(pronation)되는 정도와 최대 회내가 되는 정도를 알아 본 결과 걷기속도가 가장 빠르게 나온 B형의 신발이 회내값($-2.3{\pm}1.05^{\circ}$)이 가장 크게 나타났으며 일반걷기용 신발에서 가장 작은 값($-1.5{\pm}0.49^{\circ}$)을 보여주고 있다. 또한 노인들의 일상생활에서 착용하는 건강증진용 신발을 대상으로 운동 생리학적 부분을 살펴보면 체지방율의 변화는 모든 그룹에서 감소는 하였으나, 통계적으로 유의한 차이가 나타나지 않았는데, 이는 체지방율의 변화를 가져오기 위해서 일시적인 운동이 아닌 규칙적이고 장기적인 운동이 필요할 것으로 사료되어지며, 노인들이 건강증진용 기능화를 장기적으로 착용하여 운동할 경우 체 지방율에 긍정적인 영향을 미칠 것으로 사료되어진다.

Keywords

References

  1. Daniel. J. B and A. H. Patricia. 1989. Comparison of gait of young men and elderly men. Physical Therapy 2, 144-148.
  2. Hessert, M. J., M. Vyas, J. Leach, K. Hu, L. A. Lipsitz, and V. Novak. 2005. Foot pressure distribution during walking in young and old adults. BMC Geriatr. 19, 5-8.
  3. Imms, F. J. and O. G. Edholdm. 1981. Studies of gait and mobility in the elderly. Age Ageing 10, 147-157. https://doi.org/10.1093/ageing/10.3.147
  4. Jorgensen, U. 1990. Body load in heel strike running: the effect of firm heel counter. American J. Sports Medicine 18, 177-180. https://doi.org/10.1177/036354659001800211
  5. Karavidas, A., G. Lazaros., D. Tsiachris, and V. Pyrgakis 2010. Aging and the cardiovascular system. Hellenic. J. Cardiol. 51, 421-427.
  6. Maksimovic, M., G. Ristic, J. Maksimovic, D. Backovic, S. Vukovic, T. Ille, and V. Milovic. 2009. Relationship between physical activity and some parameters of nutritional state in adolescence. Srp. Arh. Celok. Lek. 137, 58-62. https://doi.org/10.2298/SARH0902058M
  7. Murray, M. P., R. C. Kory, and B. H. Clarkson. 1969. Walking patterns in healthy old men. J. Gerontol. 24, 169-178. https://doi.org/10.1093/geronj/24.2.169
  8. Nigg, B. M., S. M. Luethi, A. Stacoff, and B. Segesser. 1984. Biomechanical effects of pain and sport shoe corrections. Australian J. Sci. Med. Sports 16, 10-16.
  9. Nigg, B. M., A. H. Bahlsen, J. Denoth, S. M. Luethi, and A. Stacoff. 1986. Factors influencing kinetic and kinematic variables in running. Biomechanics of running shoes. Human kinetics publishers, Champaign, IL. 139-165.
  10. Nigg, B. M., A. H. Bahlsen, J., S. M. Luethi, and S. Stokes. 1987. The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J. Biomechanics 20, 951-959. https://doi.org/10.1016/0021-9290(87)90324-1
  11. Schwarzkopf, R., D. J. Perretta, T. A. Russell, and S. C. Sheskier. 2011. Foot and shoe size mismatch in three different New York City populations. J. Foot. Ankle. Surg. 50, 391-394. https://doi.org/10.1053/j.jfas.2011.04.030
  12. Stasiulis, A., A. Mockiene, D. Vizbaraite, and P. Mockus 2010. Aerobic exercise-induced changes in body composition and blood lipids in young women. Medicina (Kaunas). 46, 129-134.
  13. St-Onge, M. P. and D. Gallagher. 2010. Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26, 152-155. https://doi.org/10.1016/j.nut.2009.07.004
  14. Tremblay, M. S., R. C. Colley., T. J. Saunders., G. N. Healy, and N. Owen. 2010. Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Metab. 35, 725-740. https://doi.org/10.1139/H10-079
  15. Williams, K. R. 2000. The dynamics of running. Sports Biomechanics in Sport 1, 161-167.
  16. Winter, D. A. 1989. Biomechanical of normal and pathological gait: implications for understanding human motor control. J. Motor Behavior 21, 337-356. https://doi.org/10.1080/00222895.1989.10735488
  17. Winter, D. A., A. E. Patia, J. S. Frank, and S. E. Walt. 1990. Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy 70, 340-347.